

How long is the Coast of Britain?

CIA Factbook (2005): 12,429 km

How long is the Coast of Britain?

How long is the Coast of Britain?

 Discussed by Lewis Fry Richardson (1881-1953)

pioneer of numerical

weather prediction

Richardson's "forecast factory"

Simple Example: Koch snowflake

- First introduced by Helge von Koch (1904)
- Defined by an iteration rule:
 - Replace the middle line segment by two sides of an equilateral triangle
 - repeat infinitely...
- Hausdorff dim.: log(4)/log(3)=1.26

Frequent features of fractals

- F is self-similar (at least approximately or stochastically).
- F has a fine-structure: it contains detail at arbitrary small scales.
- F has a simple definition.
- F is obtained through a **recursive** procedure.
- The geometry of F is not easily described in classical terms.
- It is awkward to describe the local geometry of F.
- The size of F is not quantified by the usual measures of length (this leads to the Hausdorff dimension)

(after Falconer 1990)

Fractals

- Popularized (1967, Nature) by Benoît B. Mandelbrot (1924-2010) he invented the term fractal
- But: Karl Weierstraß

 (1815-1897)
 defined continuous
 non-differentiable functions

Weierstraß function (18 Jul 1872)

a pathological example of a real-valued function everywhere continuous but nowhere differentiable

Sierpinski carpet and triangle

D =log8/log3 =1.8928

Menger sponge and Sierpinski pyramid

Dimension

- "Normal" dimension (affine dimension of a vector space) defined by number of coordinates that are needed to define a point
- Covering dimension ("topological" dimension)
 make the cover half as large (a=2)
 - 1-d: make line segments half as long => you need N = 2 = 2¹ times as many (N=2).
 - 2-d: make squares half as large => you need N = 4 = 2² times as many.
 - 3-d: make cubes half as large => you need N = 8 = 2³ times as many.
- Extend this to fractional numbers

 $a^{D}=N$

D = log(N)/log(a)

Hausdorff dimension

$$3^{D} = 4$$

$$3^{D} = 8$$

$$D = log4/log3 = 1.26$$

$$D = log8/log3 = 1.8928$$

Hausdorff dimension

- Defined 1918 by Felix Hausdorff
- Also called
 - Hausdorff-Besicovitch dimension
 - Fractal dimension
 - Capacity dimension
- Can be any real number (unlike the "normal" [integer!] dimension)

Mandelbrot Set

Definition:

- for every c calculate the iteration P_c : $z\mapsto z^2+c$
- if result remains finite, then c belongs to the set

More fractals: "burning ship" and Julia set

Generation of fractals in mathematics

- Escape time fractals:
 Recurrence relation at each point in space e.g. Mandelbrot set, Julia set
- Iterated function fractals: Fixed geometric replacement rule e.g. Koch snowflake,
- Random fractals:
 Stochastic (not deterministic) processes
 e.g. random walk (Brownian motion), fractal landscapes

Self-similarity

- Exact self-similarity:
 Fractal appears identical at different scales
- Quasi-self-similarity:
 Fractal appears approximately identical at different scales
- Statistical self-similari
 Some numerical or
 statistical measure
 is preserved across
 scales

Full image: 6,975,486 / 10,614,564

= 65.7% ice

80 ice pixels out of 100 = **80%** ice cover

Dimension (using the 10x10 and 100x100 images):

a = 10 N = 7010/80 = 87.625

 $\dim = \log (N) / \log (a) = 1.94$

7010 ice pixels / 10000 in total = **70.1%** ice cover

Self similarity

1km

Frequent features of fractals

- F is self-similar (at least approximately or stochastically).
- F has a fine-structure: it contains detail at arbitrary small scales.
- F has a simple definition.
- F is obtained through a **recursive** procedure.
- The geometry of F is not easily described in classical terms.
- It is awkward to describe the local geometry of F.
- The size of F is not quantified by the usual measures of length (this leads to the Hausdorff dimension)

(after Falconer 1990)

The link to Chaos I: The logistic map

Bifurcation diagram

The link to Chaos II: The magnetic pendulum

For each starting point, calculate the final resting position (over one of the three magnets) Then colour the starting point accordingly

Result: a fractal!

General remarks

- Fractal geometry describes shapes
- It does not explain mechanisms how these shapes grow (although it can provide some constraints for possible mechanisms)
- It not inform us about the (evolutionary) function of an (biological) objects

Patterns in Nature Outline

- 1. Introduction
- 2. Waves and oscillations
- 3. Regularity and chaos
- 4. Animal cooperation
- 5. Spatial patterns
- 6. Aggregation and growth processes
- 7. Cellular automata
- 8. Fractals
- 9. Miscellaneous topics
- 10. Concluding session

Literature

- Kaye, Brian H. (1989): A random walk through fractal dimensions. VCH, Weinheim
- Falconer, Kenneth (1990): Fractal
 Geometry. Mathematical Foundations and
 Applications. John Wiley&Sons.