Patterns in Nature 8 Fractals

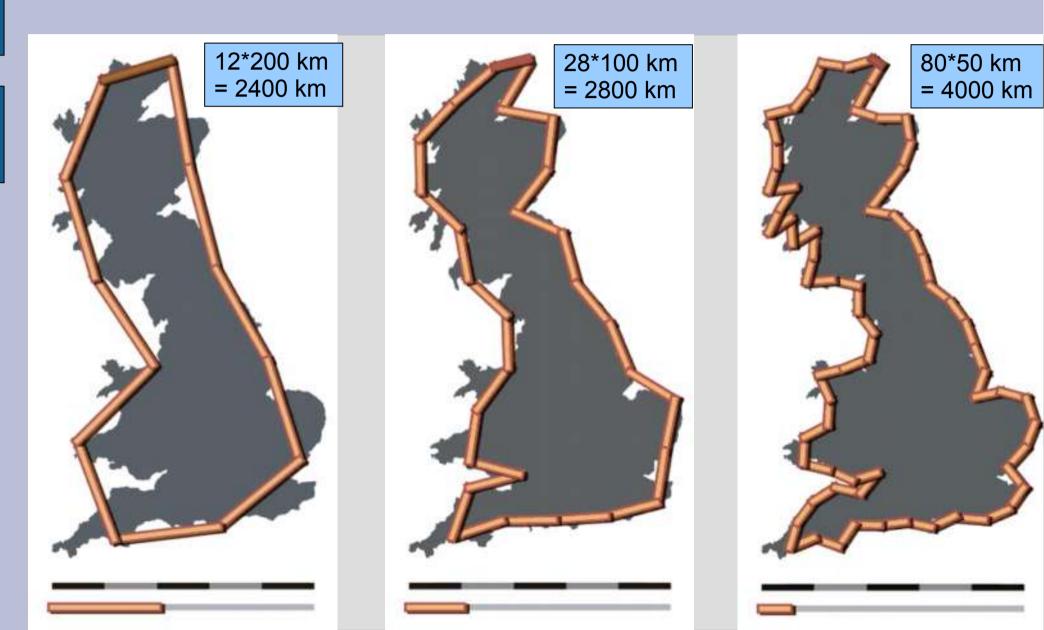
Stephan Matthiesen

How long is the Coast of Britain?

• CIA Factbook (2005): 12,429 km

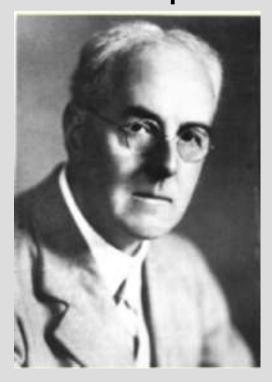
http://en.wikipedia.org/wiki/Lewis_Fry_Richardson

How long is the Coast of Britain?



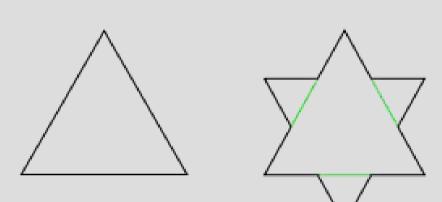
How long is the Coast of Britain?

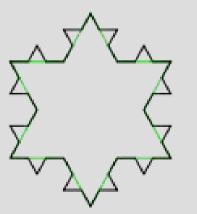
 Discussed by Lewis Fry Richardson (1881-1953)
 pioneer of numerical weather prediction

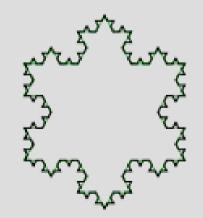


Simple Example: Koch snowflake

- First introduced by Helge von Koch (1904)
- Defined by an iteration rule:
 - Replace the middle line segment by two sides of an equilateral triangle
 repeat infinitely...
- Hausdorff dim.
 log(4)/log(3)=1.26



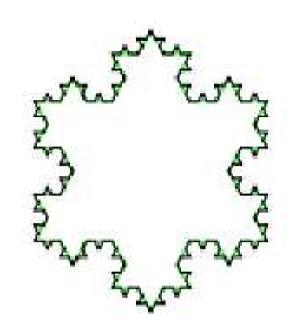




Frequent features of fractals

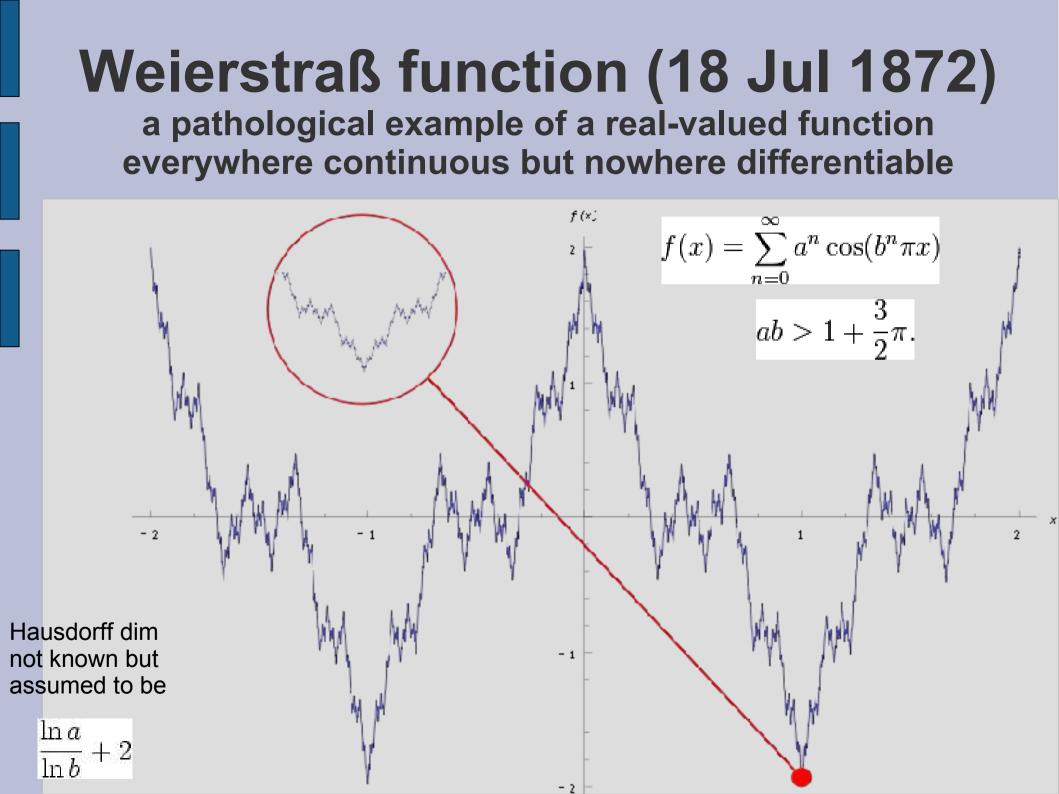
- F is **self-similar** (at least approximately or stochastically).
- F has a **fine-structure**: it contains detail at arbitrary small scales.
- F has a simple definition.
- F is obtained through a **recursive** procedure.
- The geometry of F is not easily described in classical terms.
- It is awkward to describe the local geometry of F.
- The size of F is not quantified by the usual measures of length (this leads to the Hausdorff dimension)

(after Falconer 1990)



Fractals

- Popularized (1967, Nature) by Benoît B. Mandelbrot (1924-2010)
 he invented the term fractal
- But: Karl Weierstraß (1815-1897) defined continuous non-differentiable functions



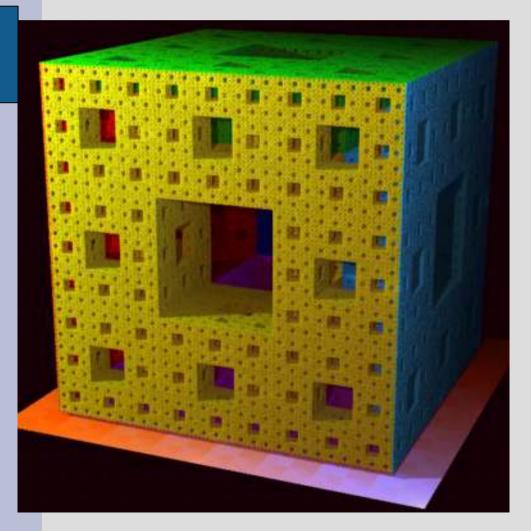
Sierpinski carpet and triangle

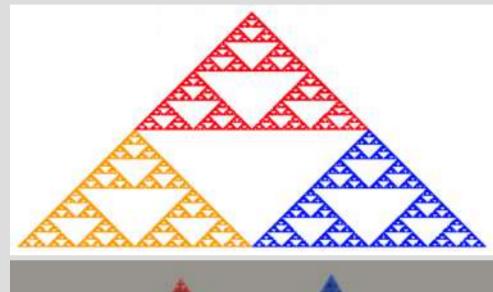
hththththt	WRADATELDATELDATEL	
1293293291	*********	*****
tation to the second		ter
Bittered Bittered		and discussion
Reflection Barting		
8.4 8.48.4 8.48.4		8.99.9 8.99.9 8.9

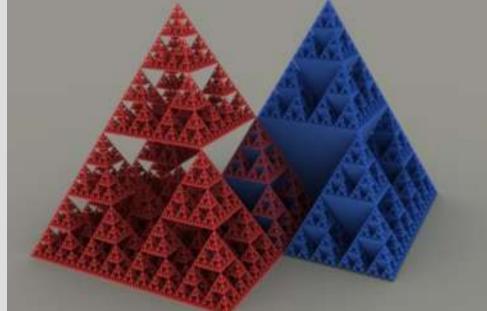
	29 29	
	661 (661	
	CI (CI	
1248248241 1248248	21 22	292297
tation tation	141 Half	initial initiality
		878 878 878
House House	98 986	
8.89.99.9		
	96 967	
		HIND CONTROL CONTROL
hathathathathat)	ward	
1292292291		
Frankright (Frankrigh		
Plandt Pland	292293273293 2253273293293	स्वर्धसः विश्वनवद्यम्भ
and a start of the start		66866
		03803803803803803803803
		199299 199299 1992
Bolt BoltBolt BoltBolt	with butter butter butter	Californi Californi Cal

=log8/log3 =1.8928

Menger sponge and Sierpinski pyramid







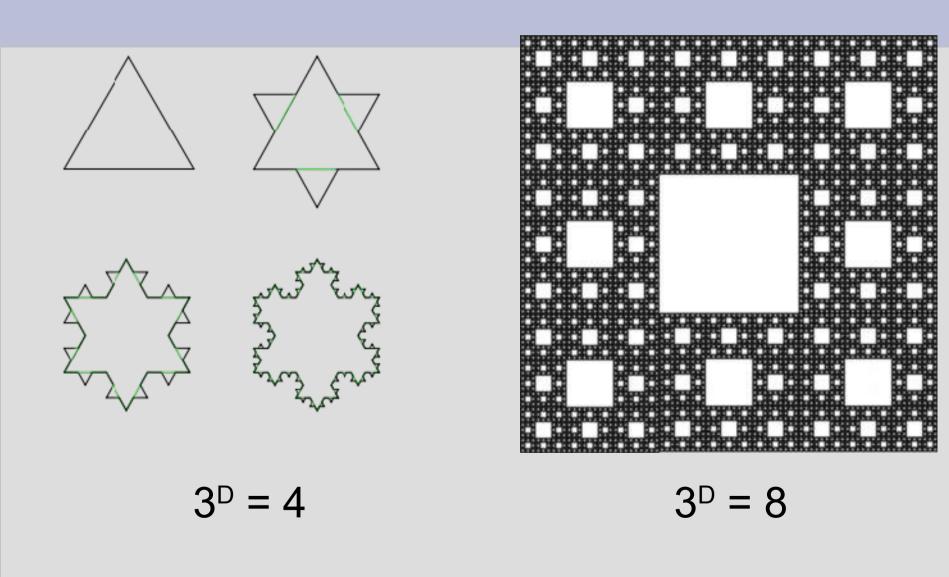
Dimension

- "Normal" dimension (affine dimension of a vector space) defined by number of coordinates that are needed to define a point
- Covering dimension ("topological" dimension) make the cover half as large (a=2)
 - 1-d: make line segments half as long => you need N = 2 = 2¹ times as many (N=2).
 - 2-d: make squares half as large => you need N = 4 = 2² times as many.
 - 3-d: make cubes half as large => you need N = 8 = 2³ times as many.
- Extend this to fractional numbers

a^D=N

D=log(N)/log(a)

Hausdorff dimension



 $D = \log 4 / \log 3 = 1.26$

 $D = \log 8 / \log 3 = 1.8928$

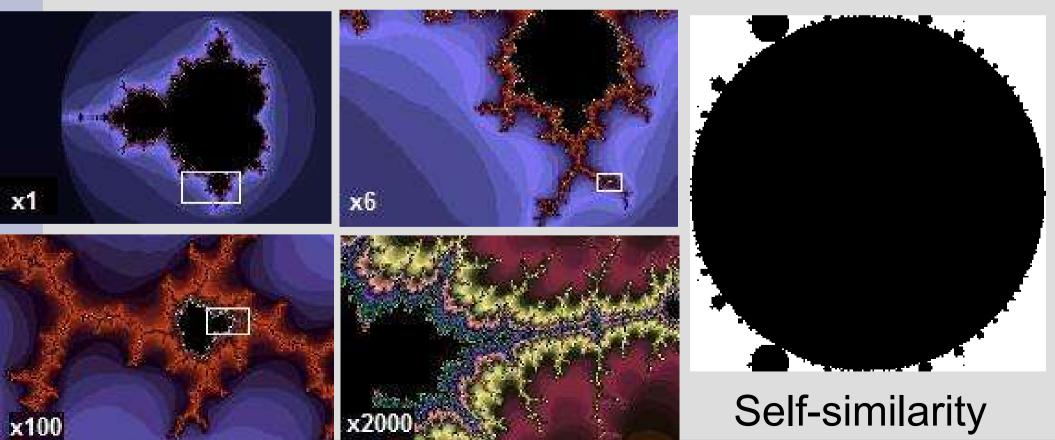
Hausdorff dimension

- Defined 1918 by Felix Hausdorff
- Also called
 - Hausdorff-Besicovitch dimension
 - Fractal dimension
 - Capacity dimension
- Can be any real number (unlike the "normal" [integer!] dimension)

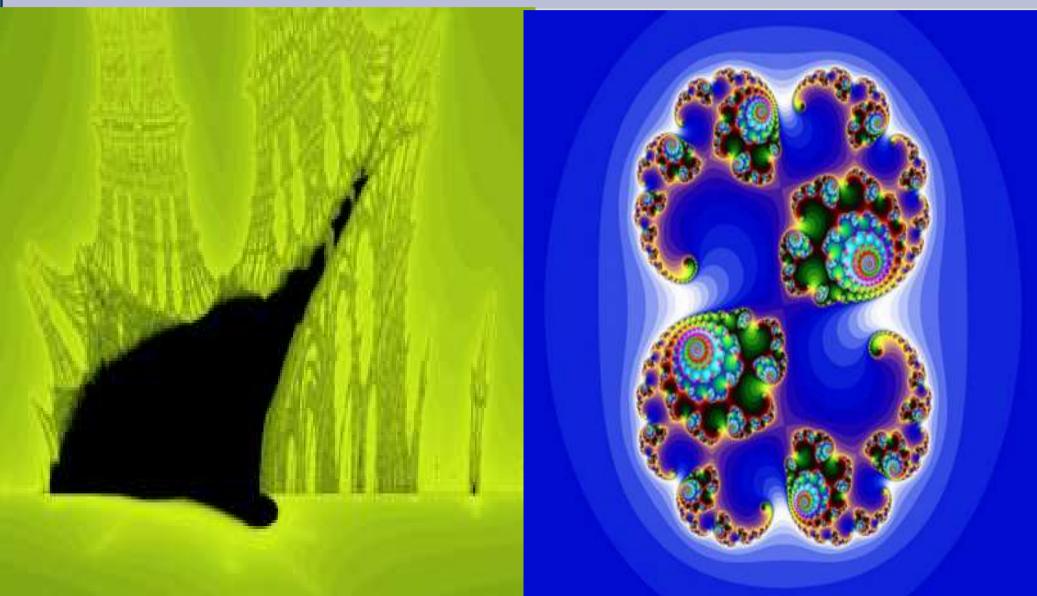
Mandelbrot Set

Mandelbrot Set

- Definition:
 - for every c calculate the iteration $P_c: z \mapsto z^2 + c$
 - if result remains finite, then c belongs to the set



More fractals: "burning ship" and Julia set



Generation of fractals in mathematics

- Escape time fractals: Recurrence relation at each point in space e.g. Mandelbrot set, Julia set
- Iterated function fractals: Fixed geometric replacement rule e.g. Koch snowflake,
- Random fractals:

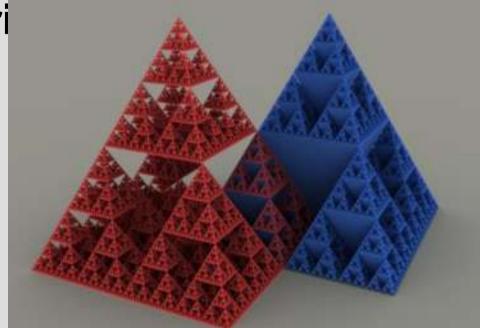
Stochastic (not deterministic) processes e.g. random walk (Brownian motion), fractal landscapes

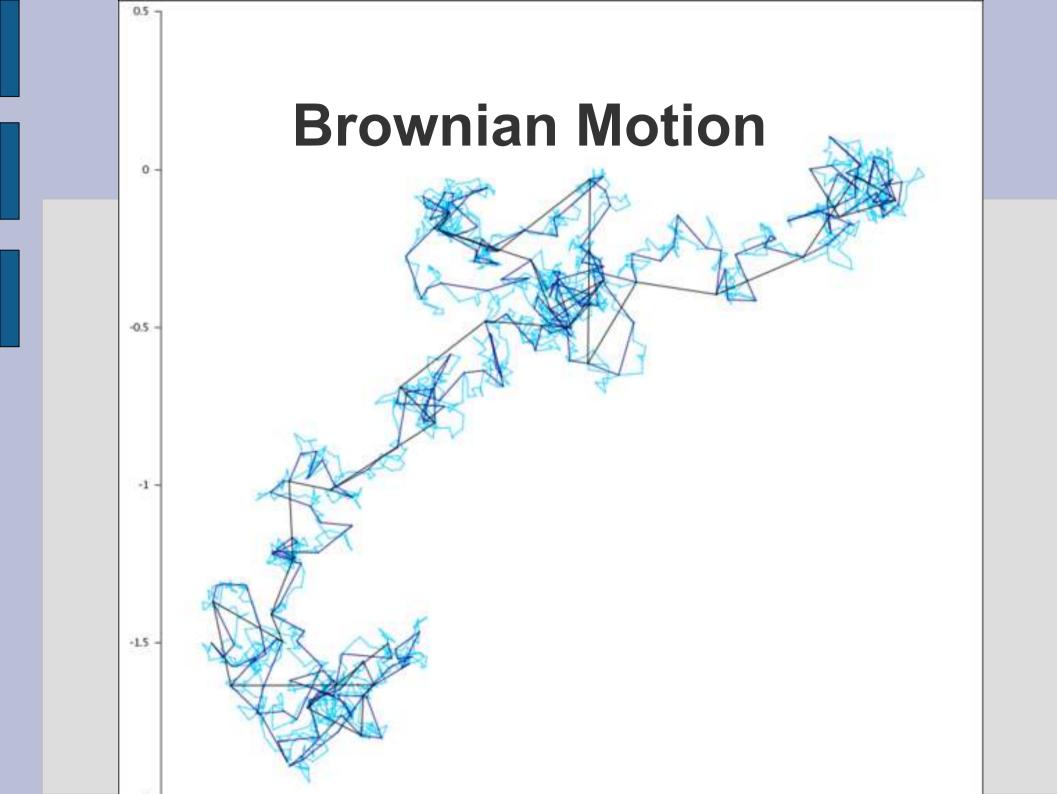
Self-similarity

 Exact self-similarity: Fractal appears identical at different scales
 Quasi-self-similarity:

Fractal appears approximately identical at different scales

Statistical self-similari Some numerical or statistical measure is preserved across scales





Snowflakes

Wilson Bentley (1865-1931)

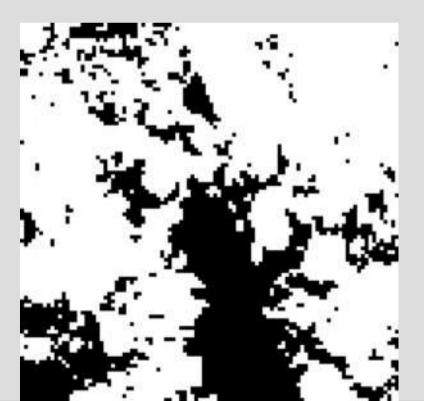
Manganese oxide dendrites

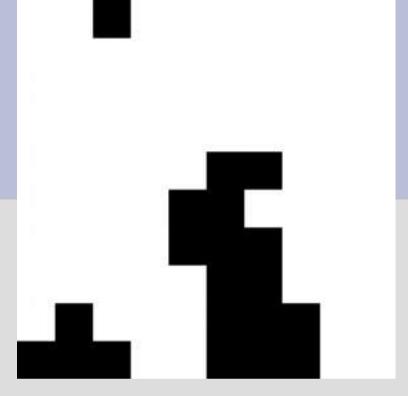
Bransley's fern (computer generated)

Landsat-7 ETM+, 7 June 2001, Arctic Ocean http://earthobservatory.nasa.gov/IOTD/view.php?id=7370

Full image: 6,975,486 / 10,614,564

= **65.7%** ice





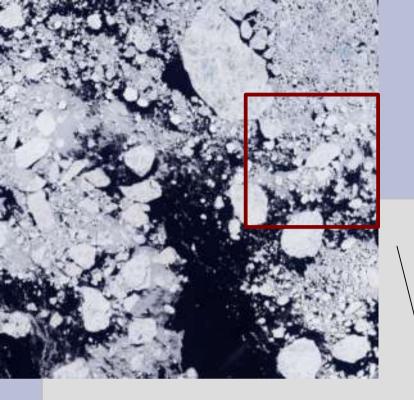
80 ice pixels out of 100 = 80% ice cover

Dimension (using the 10x10 and 100x100 images):

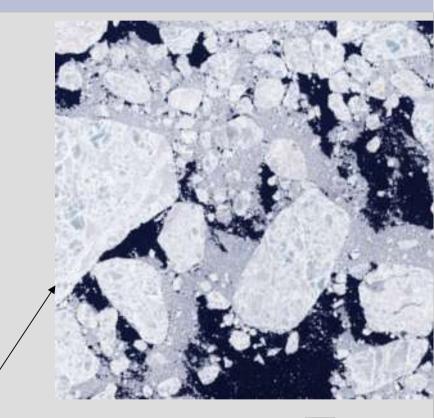
a = 10 N = 7010/80 = 87.625

dim = $\log (N) / \log (a) = 1.94$

7010 ice pixels / 10000 in total = **70.1%** ice cover

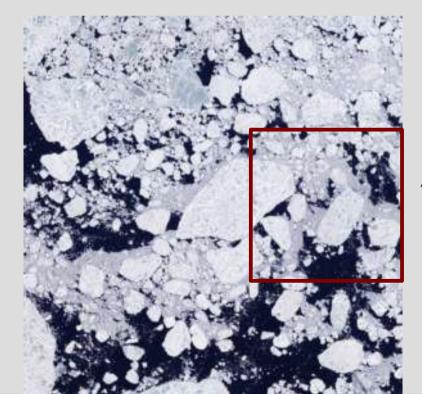


Self similarity



1km

10km

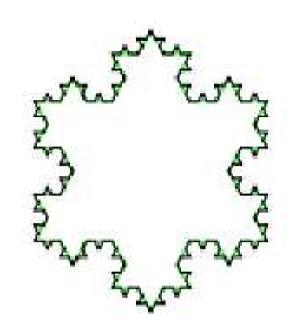


MODIS image, 7 May 2000, Bering Strait http://earthobservatory.nasa.gov/IOTD/view.php?id=657 MODIS image, 7 May 2000, Bering Strait http://earthobservatory.nasa.gov/IOTD/view.php?id=657

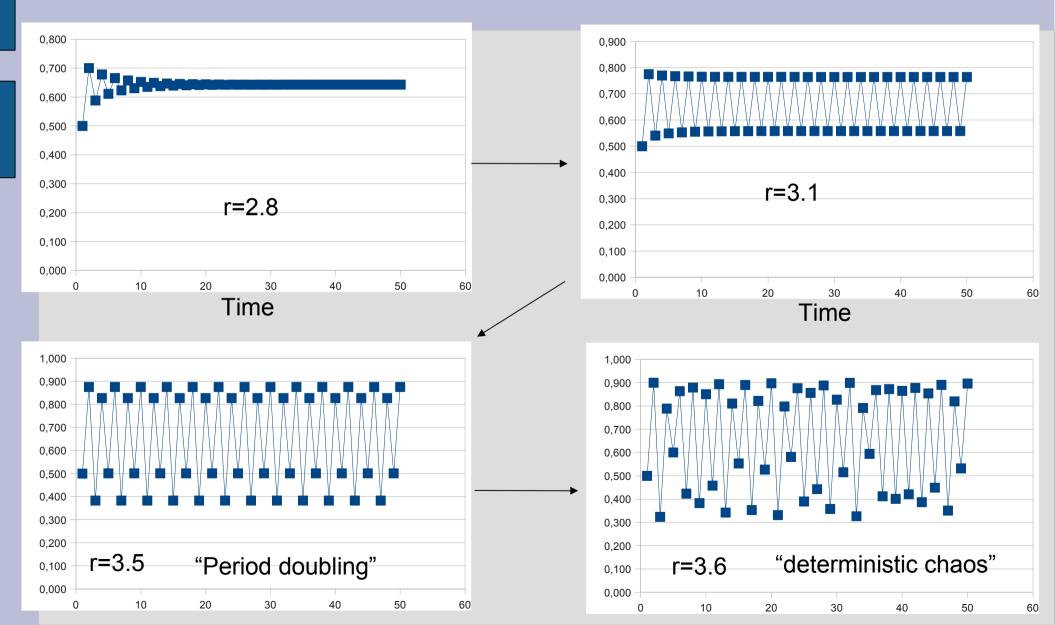
Frequent features of fractals

- F is **self-similar** (at least approximately or stochastically).
- F has a **fine-structure**: it contains detail at arbitrary small scales.
- F has a simple definition.
- F is obtained through a **recursive** procedure.
- The geometry of F is not easily described in classical terms.
- It is awkward to describe the local geometry of F.
- The size of F is not quantified by the usual measures of length (this leads to the Hausdorff dimension)

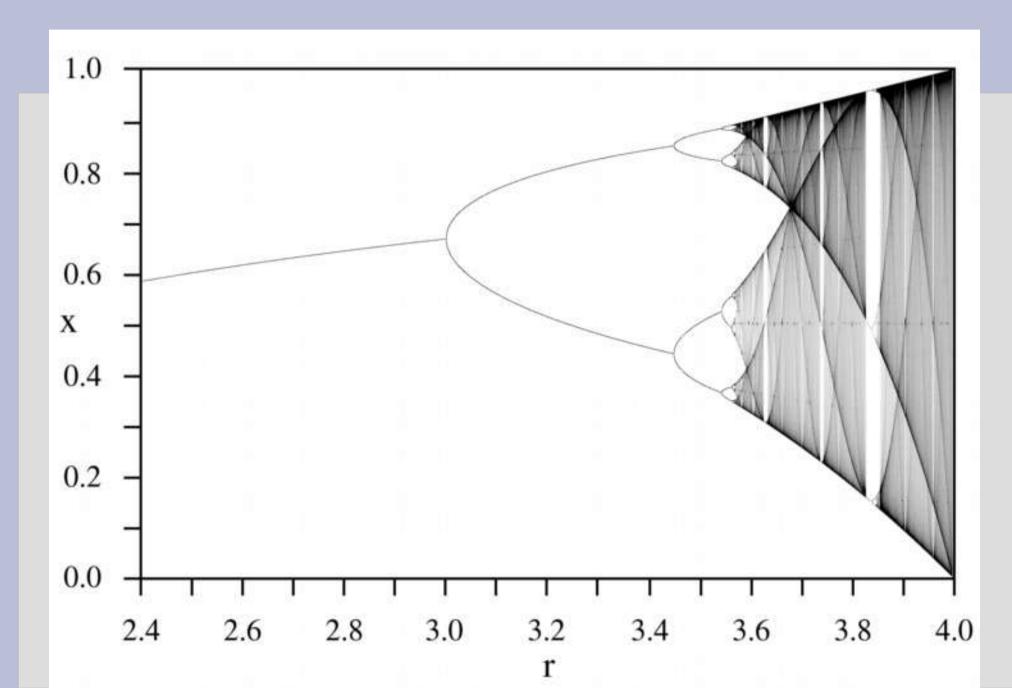
(after Falconer 1990)



The link to Chaos I: The logistic map

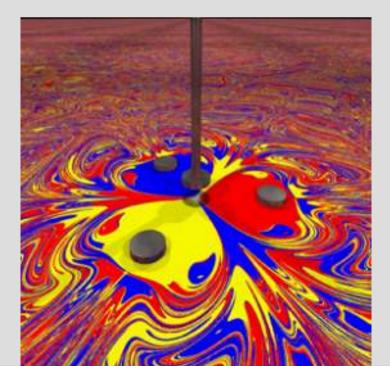


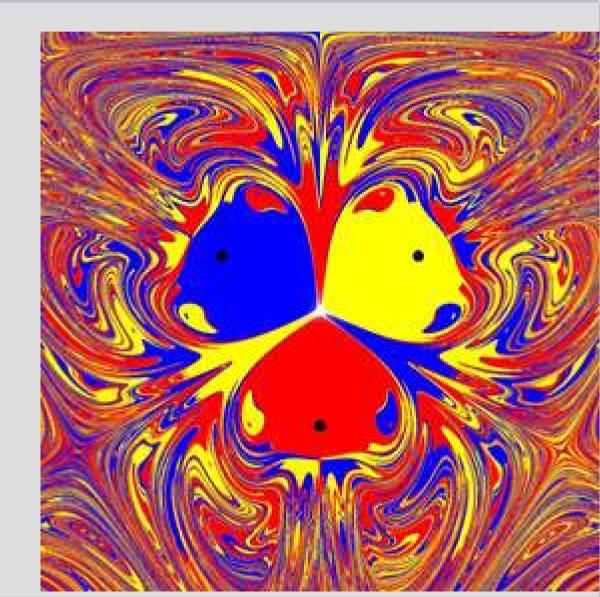
Bifurcation diagram



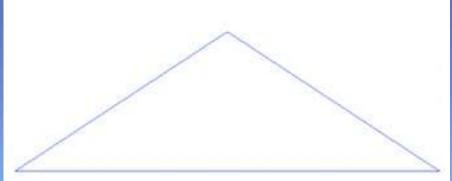
The link to Chaos II: The magnetic pendulum

For each starting point, calculate the final resting position (over one of the three magnets) Then colour the starting point accordingly **Result: a fractal!**





Fractal landscape



Random midpoint displacement

General remarks

- Fractal geometry describes shapes
- It does not explain mechanisms how these shapes grow (although it can provide some constraints for possible mechanisms)
- It not inform us about the (evolutionary) function of an (biological) objects

Patterns in Nature Outline

- 1. Introduction
- 2. Waves and oscillations
- 3. Regularity and chaos
- 4. Animal cooperation
- 5. Spatial patterns
- 6. Aggregation and growth processes
- 7. Cellular automata
- 8. Fractals
- 9. Miscellaneous topics
 10. Concluding session

Literature

- Kaye, Brian H. (1989): A random walk through fractal dimensions. VCH, Weinheim
- Falconer, Kenneth (1990): Fractal Geometry. Mathematical Foundations and Applications. John Wiley&Sons.