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How long is the Coast of Britain?

 CIA Factbook (2005): 12,429 km



How long is the Coast of Britain?

12*200 km
= 2400 km

28*100 km
= 2800 km

80*50 km
= 4000 km

http://en.wikipedia.org/wiki/Lewis_Fry_Richardson



How long is the Coast of Britain?

 Discussed by Lewis Fry Richardson 
(1881-1953)
pioneer of numerical
weather prediction

Richardson's „forecast factory“



Simple Example:
Koch snowflake

 First introduced by 
Helge von Koch 
(1904)

 Defined by an 
iteration rule:

− Replace the middle 
line segment by two 
sides of an 
equilateral triangle

− repeat infinitely...
 Hausdorff dim.: 

log(4)/log(3)=1.26



Frequent features 
of fractals

• F is self-similar (at least 
approximately or stochastically).

• F has a fine-structure: it contains 
detail at arbitrary small scales.

• F has a simple definition.
• F is obtained through a recursive procedure.
• The geometry of F is not easily described in 

classical terms.
• It is awkward to describe the local geometry of F.
• The size of F is not quantified by the usual 

measures of length (this leads to the Hausdorff 
dimension)

(after Falconer 1990)



Fractals

• Popularized (1967, Nature) by
Benoît B. Mandelbrot
(1924-2010)
he invented the term fractal

• But: Karl Weierstraß
(1815-1897) 
defined continuous non-
differentiable functions



Weierstraß function (18 Jul 1872)
a pathological example of a real-valued function

everywhere continuous but nowhere differentiable

Hausdorff dim 
not known but 
assumed to be 



Sierpinski carpet and triangle

D
=log8/log3
=1.8928



Menger sponge and
Sierpinski pyramid



Dimension

 “Normal” dimension (affine dimension of a 
vector space) defined by number of 
coordinates that are needed to define a point

 Covering dimension (“topological” dimension)
make the cover half as large (a=2)

− 1-d: make line segments half as long =>
you need N = 2 = 21 times as many (N=2).

− 2-d: make squares half as large =>
you need N = 4 = 22 times as many.

− 3-d: make cubes half as large =>
you need N = 8 = 23 times as many.

 Extend this to fractional numbers

aD=N

D=log(N)/log(a)



Hausdorff dimension

3D = 8

D = log8/log3 = 1.8928

3D = 4

D = log4/log3 = 1.26



Hausdorff dimension

 Defined 1918 by 
Felix Hausdorff

 Also called
− Hausdorff-Besicovitch dimension
− Fractal dimension
− Capacity dimension

 Can be any real number
(unlike the “normal” [integer!] 
dimension)



Mandelbrot Set



Mandelbrot Set

 Definition:
− for every c calculate the iteration
− if result remains finite, then c belongs to the set

Self-similarity



More fractals:
“burning ship” and Julia set



Generation of fractals in mathematics

 Escape time fractals:
Recurrence relation at each point in space
e.g. Mandelbrot set, Julia set

 Iterated function fractals:
Fixed geometric replacement rule
e.g. Koch snowflake, 

 Random fractals:
Stochastic (not deterministic) processes
e.g. random walk (Brownian motion), fractal 
landscapes



Self-similarity

 Exact self-similarity:
Fractal appears identical at different scales

 Quasi-self-similarity:
Fractal appears approximately identical at 
different scales

 Statistical self-similarity:
Some numerical or 
statistical measure 
is preserved across 
scales



Brownian Motion



Snowflakes
Wilson Bentley (1865-1931)



Manganese oxide dendrites



Bransley's fern
(computer generated)





http://earthobservatory.nasa.gov/IOTD/view.php?id=7370



80 ice pixels out of 100 = 80% ice cover

7010 ice pixels / 10000 in total 
= 70.1% ice cover

Full image:
6,975,486

/ 10,614,564

= 65.7% ice

Dimension (using the 
10x10 and 100x100 images):

a = 10 
N = 7010/80 = 87.625

dim = log (N) / log (a) = 1.94



Self similarity



Frequent features 
of fractals

• F is self-similar (at least 
approximately or stochastically).

• F has a fine-structure: it contains 
detail at arbitrary small scales.

• F has a simple definition.
• F is obtained through a recursive procedure.
• The geometry of F is not easily described in 

classical terms.
• It is awkward to describe the local geometry of F.
• The size of F is not quantified by the usual 

measures of length (this leads to the Hausdorff 
dimension)

(after Falconer 1990)



The link to Chaos I:
The logistic map
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Bifurcation diagram



The link to Chaos II:
The magnetic pendulum

For each starting point, calculate 
the final resting position (over 
one of the three magnets)
Then colour the starting point 
accordingly
Result: a fractal!



Fractal landscape

Random midpoint displacement



General remarks

• Fractal geometry describes shapes
• It does not explain mechanisms how these 

shapes grow (although it can provide some 
constraints for possible mechanisms)

• It not inform us about the (evolutionary) 
function of an (biological) objects
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