
Chapter 13: The Quasi-Geostrophic Equations 
 
In our search for explanation of the behaviour of atmospheric phenomena, we will 
need to try to write down all the equations which govern atmospheric behaviour and 
try to solve them simultaneously. In their raw form, the equations prove too complex 
for analytical treatment, and we have either to solve the full set using computer 
techniques or we have to somehow simplify the equations to the point where 
analytical solutions are possible and hope that the solutions to the simplified equations 
still contain useful insights to the real behaviour. In this course we are following the 
latter strategy. We will develop these with p as the vertical co-ordinate. 
 
We have already seen one level of simplification when we adopted the tangent-plane 
approximation and used rectangular Cartesian co-ordinates instead of the full 
spherical co-ordinates. In this chapter we develop a set of equations which has proved 
tractable, by systematically applying the geostrophic approximation. 
 

The f-plane and ββββ-plane 
 
We shall continue to adopt the tangent-plane approximation, but the next step in our 
development requires us to decide how to treat the Coriolis parameter, f . This is a 
trigonometrical function of latitude, but latitude on the tangent plane is no longer 
defined in the quite the same way. 
 

The f-plane 
The simplest treatment is simply to replace every occurrence of f  by a constant value 

0f . The resulting set of equations are said to follow the f-plane approximation. The 
“plane” is to remind us that we are using the tangent plane, and the “f” is to remind us 
that we have constant Coriolis parameter (and by the same token the vertical 
component of the Earth’s rotation is treated as constant everywhere in this 
approximation). We shall make use of this approximation in a later chapter when 
studying cyclone development. 
 

The ββββ-plane 
The f-plane approximation is too restrictive for some purposes. The next simple level 
of treatment is to allow f  to vary in the north-south direction but to make it only a 

linear function. Thus we write ( )00 yyff −+= β , where 
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The stream function 
 
With p as vertical component, the equations for the components of the geostrophic 

wind ( )gg vu ,  are defined as 
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, where φ  is the geopotential. 

 
Using that approximation and the further approximation that the scales are such that 

( )00 yyf −>> β  the expressions for the geostrophic wind components become 
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Eq 1 

ψ  is a streamfunction. The (geostrophic) flow is parallel to lines of constant ψ  and 
its strength is proportional to the spacing of iso-lines of ψ . 
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Eq 2 
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Eq 3 

 
Note that Eq 1 to Eq 3 are all appropriate for both the f-plane and the β-plane. 
 

The vorticity equation 
Previously we had the vorticity equation in the form  
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Now the typical magnitude of orel RLfUf == //ζ , so that on the right of the 
equation the relative vorticity can be neglected compared to the Coriolis parameter to 
the order of the Rossby number. Moreover in all the terms on the left the wind can be 
replaced by the geostrophic wind, to the same order of approximation. The result is 
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The subscript g on the material derivative is to remind us that it is to be evaluated 
using the geostrophic approximation and the subscript p is to remind us to hold 
pressure constant while doing the differentiation. 
 
Note that the left hand side of Eq 4 can be written entirely in terms of the 
streamfunction, so the equation contains two dependent variables, ψ  and ϖ . Thus for 
a full specification of the physical system, we will need another equation in these two 
variables. Now Eq 4 can be regarded as a version of the momentum equation which 
we have massaged somewhat, so the other equation will need to come from a different 
physical principle. It does not take much thought to realise that the physical statement 
which we have not employed in producing Eq 4 is the first law of thermodynamics. 
We can regard the momentum equation as governing the movement of the centre of 
mass of the cloud of molecules which make up the air particles, while the first law of 
thermodynamics keeps track of the energy of the movement of the molecules about 
their centre of mass (i.e. the internal energy of the particles). In writing down that law 
in the form appropriate to large-scale motion it is useful to note the following 
relationship. 

Relation between streamfunction and temperature 
 
In an earlier chapter, we noted that vertical gradients of geostrophic wind are related 
to horizontal gradients of temperature, we might expect there to be a simple 
relationship between the vertical derivative of the streamfunction and temperature. 
Indeed there is, and it is readily found, for 
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   by the hydrostatic equation (remember zg∂≡δϕ ). Thus  
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Eq 5 

The thermodynamic equation. 
 
For the purposes of this course, we shall assume that the motion is adiabatic. Thus as 
an air parcel moves about, its entropy and hence its potential temperature remains 
constant. This approximation is acceptable for many days in the stratosphere, but only 
for a few days in the troposphere. Locally (where latent heat is released) it can be 
quite a poor approximation, but the areas of precipitation in large-scale flow are 



relatively small. Thus our thermodynamic equation, without any approximation apart 

from that of negligible heat supply to the air particles, is 0=
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Now since κκθ 0pTp−= , we shall have  
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which is easily rewritten as 
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Eq 6 

 
Now we introduce our approximations for synoptic scale flow, i.e. we will treat flows 
for which the Rossby Number is small and the horizontal velocity components are 
replaced by the geostrophic versions.  
 
We shall also introduce a small approximation to the final term on the left hand side. 

First write Γ−=
∂
∂

p
T θ
θ

, so that Γ  is a measure of static stability. In the strongly 

stratified situations of synoptic scale motion Γ  is a function of pressure, but its 
fractional variations in the horizontal are only a few percent, whereas the fractional 
variations of ϖ  in the horizontal are large, changing sign between its maximum and 
minimum values. The essence of Eq 6 is therefore captured if we replace Γ  by its 
area average (the average being taken at constant pressure). If we denote this area 
average by 0Γ  and substitute for T from Eq 5, then Eq 6 becomes  
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Eq 7 

The pair of equations Eq 4 and Eq 7 consist entirely of terms which can be written in 
terms of the two dependent variables ψ  and ϖ . As we have two equations in two 
unknowns, they completely determine the evolution of the flow, and if their 
distribution is known at a given instant, the future evolution can also be found 
(subject to suitable boundary conditions). They are known as the quasi-geostrophic 
equations and the set of approximations which produced them is known as the quasi-
geostrophic approximation.  
 
Notice that we have not said that he wind is exactly geostrophic, all we have done is 
said that it is approximately geostrophic, and given that it is so (i.e. that the Rossby 
number is small) we have found the relationship between the first order variables 
when terms of order the Rossby number are neglected. If we chose to, we could 



deduce equations which would allow us to calculate those smaller terms. For instance 
as the stream function evolves in time, it is clear that there are accelerations in this 
flow. We could use the geostrophic wind to estimate the accelerations  and hence we 
could estimate the ageostrophic components (just as we did in an earlier chapter). 
 
There are two important new equations which can be deduced from Eq 4 and Eq 7, 
one by eliminating ϖ  between them, the other by eliminating the local time 
derivatives of ψ . 
 

Quasi-geostrophic potential vorticity 
 
ϖ  may be eliminated by writing it as the subject of Eq 7 and substituting into Eq 4. It 
is left as an exercise for the student to derive the result, which is  
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Eq 9 

Eq 8 tells us that the quantity gq  is conserved following the qeostrophic flow. From 

Eq 9 we see that this is the absolute vorticity, modified by adding to it a term 
involving the vertical temperature gradients. Hence we may identify gq  as a sort of 

potential vorticity which is unchanging for an observer moving with the geostrophic 
flow. Note that it has the form of a modified Laplacian of the stream function. 
 

The omega equation 
 

If we eliminate 
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The left hand side is a modified 3-D Laplacian of the vertical velocity ϖ , while the 
right hand side comprises two terms, one the vertical gradient of vorticity advection, 



the other the horizontal (2-D) Laplacian of temperature advection. The right hand side 
can be found from the instantaneous distributions of wind (or streamfunction), 
enabling the vertical velocity to be found by inverting the 3-D Laplacian subject to 
suitable boundary conditions. Suitable boundary conditions are 0=ϖ  at the surface 
and at the top of the atmosphere and at the edges of the region of interest. 
 
 


