
Chapter 12: Potential vorticity: The Heat Low: 
Deflection of Airflow by Mountains 
 

Limit to anticyclonic vorticity 
 
The vorticity equation in the form we have derived it sets a lower limit on the 
vorticity but no upper limit. To see this re-arrange the equation as  
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Air which is initially at rest will have positive absolute vorticity. This equation then 
says how ( )absζln  varies in time, the changes in a finite time simply being given by 

the time integral of the horizontal convergence. In principle ( )absζln  can reach very 

large positive or negative values, so that absζ  may attain very large values, or values 

very near to zero. However, while the positive values of absζ  require very large 

positive relative vorticity, the very small values of absζ  correspond to frel −=ζ . 
Thus the relative vorticity cannot be made more negative than minus the Coriolis 
parameter, but there is no upper bound to the positive values of relative vorticity 
which can be attained. This accords with our experience that anticyclones have rather 
gentle pressure gradients (and hence winds and hence vorticities), whereas pressure 
gradients at the centre of cyclones can be very large. High surface windspeed are 
found near the centre of low pressure systems. The difference in vigour of cyclones 
and anticyclones is clearly visible in the figure below. 
 



 
 

The Heat Low 
A description of the Heat Low will be included here. For now see Chapter 4 if 
Dynamical Meteorology Ed Atkinson Methuen 1981 and the slides associated with 
this lecture  

Deflection of airflows by mountain ranges 
 
We shall consider flow over an isolated mountain range, and for simplicity we will 
confine our attention to flow which to the west of the range is uniform and from west 
to east. We shall also assume no variation in the north-south direction 
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pδ  at B is smaller than at A, thus absζ  

at B is also smaller than at A, so that 
the potential vorticity remains 
constant. 
 
Now we have chosen conditions at A 
such that 0=relζ  there, so that at A 

fabs =ζ . It follows that at B fabs <ζ  and hence that 0<relζ  there. 
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This argument shows that 0<relζ  all 
the time that the air is over the 
mountain. Since we have required no 
variation in the north-south directions 
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Thus v  gets progressively more 
negative as the air flows across the 
mountain.  
 
Hence mountains deflect uniform westerly airstreams towards the South. 
 

Potential vorticity 
 
There is a useful dynamical quantity which is 
conserved by fluid particles under certain ideal 
conditions. Our starting point will be Error! 
Reference source not found.a. The basic idea is that 
the final term factor on the right is to do with air 
columns getting longer (in pressure co-ordinates), so 
if we divide the absolute vorticity by some 
appropriate function of the length of an air column 
we will end up with something which stays constant. 
 
Consider the motion of a column of fluid which we 
will mark somehow (say with smoke) and which has its 
top at pressure 2p  where the potential temperature is 2θ  and its bottom at pressure 1p  
where the potential temperature is 1θ . As the column moves about, 1p  and 2p  will 
change. If the motion is adiabatic 1θ  and 2θ  will not change, but if it is diabatic then 
they will. 
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 so we can show that, for a marked column of 

length 21 ppp −=δ , that there is an analogous relation 
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, which is 

correct to first order in small quantities. Inserting this into Error! Reference source 
not found. gives  
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Dividing by pδ we see that this implies that  
 

A 

B 
C 

o
x

v <
∂
∂  

ov =  

View from above 

 

P1 

P2 

1θ  

2θ  

Figure 1 



0=�
�

�
�
�

�

pDt

D abs

p δ
ζ

 

 

That is 
p
abs
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ζ

 is constant for the air column. It is sometimes known as potential 

vorticity, but we shall derive a more fundamental version shortly. 
 
Note that we have implicitly assumed that the motion is frictionless and large-scale 
(needed for the approximations inherent in our form of the vorticity equation). 
 

Potential vorticity at a point 
 
The version of potential vorticity described above is for a finite column of fluid. Such 
columns eventually deform, so it would be preferable to define a potential vorticity 
which is a point quantity. 
 
We can obtain this by referring to Figure 1. Since 1p  and 2p  are the ends of a marked 
column of air, the values of 1θ  and 2θ  will stay the same under adiabatic flow. Thus 
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. In the limit where 21 pp → , we see that  
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 is conserved for frictionless, adiabatic motion. 

 
This quantity is a version of potential vorticity defined for points in the fluid. In z co-

ordinates it looks like absz
ζθ

ρ ∂
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There is a version of potential vorticity known as Ertel’s potential vorticity after the 
scientist who discovered it, which is true adiabatic, frictionless fluids of all scales. 

This quantity is ( ) θ
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. Note that in this expression the vector quantities 

(namely relative vorticity, Earth’s rotation and the gradient of potential temperature) 
are the full 3-D versions. Proving this relationship is beyond the scope of our course. 
Ertel’s potential vorticity reduces to the form we have deduced for large scale flow 

when the flow is so strongly stable (
z∂

∂θ
 large) that the gradient of potential 

temperature is so close to the vertical that the terms from the horizontal components 
of the vorticity become negligible in comparison. 


