
Chapter 11: Relation between vorticity, divergence and 
the vertical velocity  
 

The divergence equation 
 
In chapter 3 we used a simple version of the continuity equation. Here we develop it 
further, partly because it will give useful relationship between horizontal divergence 
and vertical velocities and partly because it is one of the fundamental equations which 
we will need when we attempt to solve the equations of motion to deduce the 
properties of various meteorological phenomena. 
 
The fundamental idea is that the mass of a marked lump of fluid stays constant, so 
that for a small lump of volume δτ , say, and density ρ , the product of volume and 

density remains constant, i.e. ( ) 0=ρδτ
Dt

D
. If the mass is constant, so is its volume, 

so that we also have ( ) 0ln =ρδτ
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D
.  This can be re-written  
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Eq 1 

Now we remarked in chapter 11 that vdiv
Dt

D =δτ
δτ
1

. (It is the full 3-D divergence 

which appears in this expression.) We did not prove this result, but you were invited 
to prove the 2-D analogue of it as one of the problems on that chapter, and the 
generalisation to 3-D is straightforward. Putting that result into Eq 1 and expanding 
the derivative gives  
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Eq 2 

Other ways of writing this are 
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and 
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Eq 4 

Eq 3 and Eq 4 are the continuity equation. Being written in vector form those 
equations make no assumption about the co-ordinate system. There is an 
approximation to these equations which we can make. To demonstrate this, we will 



write the equation in our tangent plane rectangular co-ordinate system. Another way 
of grouping the terms is  
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The term in curly brackets in the last equation can be shown to be small compared 
with the other terms, so to good approximation the continuity equation is  
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We see that there is a relationship between the vertical velocity and the horizontal 
divergence. Vertical velocities usually have their largest magnitude in the middle of 
the troposphere. This is not surprising, as the surface must mean that vertical 
velocities are zero actually at the surface. In addition the high static stability of the 
stratosphere suppresses vertical velocities in the vicinity of the tropopause. Thus the 
largest vertical velocities occur in the middle of the troposphere. If there is upward 

motion in the middle troposphere we shall have 
( )

0>
∂

∂
z

wρ
 in the lower troposphere 

and 
( )

0<
∂

∂
z

wρ
 in the upper troposphere. It follows that in this case 0<hhdiv v  in the 

lower troposphere and 0>hhdiv v  in the upper troposphere. That is to say that middle 
level ascending motion has  (horizontal) convergence below it and divergence above 
it, while descending motion in middle levels has divergence below it and convergence 
above it.  
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The sketches above show some possible configurations of vertical and horizontal 
velocities and hence horizontal convergences and divergences. 
 

Magnitude of the vertical velocity 
 
We can use the approximate continuity equation (Eq 5) to estimate typical values of 
the vertical velocity. Expanding that equation we obtain 
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Now if we use HLWU ,,,  for typical orders of magnitude for, respectively,  the 
horizontal, and vertical velocities and horizontal and vertical distances, then the terms 

on the left-hand side of the equation are of order 
H

W
 We have seen in the previous 

chapter that the right hand side is of order 
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U
Ro . Hence we must have that 
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The ratio 
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 for mid-latitude systems is 
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, so we might have expected 

that vertical velocities were about one hundredth of horizontal velocities, but our 
analysis shows that we must multiply by an additional factor of the Rossby number 
(namely 1/10 in for the mid-latitude synoptic scale). Thus the vertical velocities are 
typically 1/1000 time the horizontal ones. This gives a typical large-scale mid-latitude 
vertical velocity of 1cm/sec or 1km per day. 
 
A consequence of these magnitudes is that the vertical advection terms in the material 

derivative are small. The material derivative is 
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may be ignored to order of the Rossby number, or in symbols:- 
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The vorticity equation 
 
An important relation between the vorticity and divergence (and hence vertical 
velocities) emerges when we derive the rate of change of vorticity. To obtain this we 



start from the equations of motion, in which we have neglected the vertical advection 
term. 
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Take 
y∂

∂
 of the first equation from 

x∂
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 of the second, giving 
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We have ignored the terms in the horizontal gradients of density, as being small 
compared to the retained terms. The terms on the right cancel and the remainder of the 
equation can be re-arranged to give  
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Eq 6 

 
This is known as the vorticity equation. We have added a subscript h to the material 
derivative to remind ourselves that only the horizontal terms matter. Sometimes this is 
described as “the rate of change following the horizontal motion” for obvious reasons. 
 
Absolute vorticity is usually positive in the northern hemisphere (and negative in the 
southern). According to this equation, the magnitude of the absolute vorticity is 
decreased by horizontal divergence and increased by horizontal convergence. This is a 
consequence of the conservation of angular momentum. Consider a lump of air. 
Convergence decreases the horizontally projected area of the lump. Hence it decreases 
its moment of inertia. To maintain a constant angular momentum the lump has to spin 
faster. The opposite occurs for the case of horizontal divergence. 
 
 
Using the continuity equation in the form of Eq 5 to eliminate the divergence from Eq 
6 gives  
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The term on the right is positive if wρ  is increasing upwards. The dominant effect is 
whether w  increases upwards or not. If it does it means that the air columns are 
stretching. Stretching air columns lead to an increase in the magnitude of the absolute 



vorticity, while shrinking air columns lead to a decrease in the magnitude of the 
absolute vorticity. 
 

Vorticity and Divergence equations in pressure co-ordinates 
 
We shall find it useful to use pressure co-ordinates in later developments. It can be 
shown, by analysis which will need to be taken on trust in this course, that for 
hydrostatic atmospheres, the continuity equation in pressure co-ordinates becomes  
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The three-dimensional divergence is zero in pressure co-ordinates. Note that there are 
no time derivatives in this equation.. Since the hydrostatic equation implies 

zgp δρδ −= , we might expect gw
Dt

Dz
g

Dt

Dp ρρϖ −=−= ~ . The similarity between Eq 

7 and the approximate form of the continuity equation in the previous chapter is thus 
apparent. However, it turns out that, while that equation is only approximate, Eq 7 is 
exact to the extent that the hydrostatic equation holds. 
 
The vorticity equation in pressure co-ordinates becomes 
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Eq 9 b 


