Problems on Chapter 10: Vorticity and Divergence

- Q 10.1: On a particular occasion the wind was 14.14 m s⁻¹ from the NW near the surface and 14.14 m s⁻¹ from the SW at a height of 4 km. What were the horizontal components of relative vorticity?
- Q 10.2: On a particular occasion the wind in the vicinity of a point O was observed to be blowing from SE to NW in straight parallel lines with windspeed increasing towards the NE by 20 m s⁻¹ for each 500 km. What was the relative vorticity? If this was at 45°N, what was the absolute vorticity?
- Q 10.3: In the lecture and notes we used the relation

$$\operatorname{div}_{h} \boldsymbol{v}_{h} = \frac{1}{\delta A} \frac{D}{Dt} \delta A$$

where δA is the area of a horizontal area of small marked element of fluid which is initially square. Prove this.

Q 10.4: Consider a horizontal velocity v_h given by $v_h = v_r + v_d$, with the terms on the right hand side of the form $v_r = k \times \nabla \Psi$ and $v_d = \nabla \Phi$. Show that v_r has vorticity but is non-divergent, and that v_d has divergence but is irrotational (i.e. has no vorticity). Show too that Ψ and Φ (known as the stream function and velocity potential respectively) can always be found by solving an appropriate equation involving the Laplacian, so that the wind can always be split into a rotational and divergent part.

(Hint: take div and curl of the velocity)