
Chapter 10: Vorticity and divergence 
 
In this chapter we look at two important derivatives of the wind field, vorticity and 
divergence. 
 

Formal definition of vorticity 
 
The vorticity plays an important role in fluid dynamics generally. It is defined as the 
curl of the wind, namely vcurl . 
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As the velocities in this expression are measured relative to a frame of reference fixed 
in the earth, this quantity is known as the relative vorticity. 
 
Since in general the horizontal velocities are much larger than vertical velocities, and 
vertical scales are much smaller than horizontal scales, in the x and y components of 
that expression we can neglect the terms in the vertical velocity, giving  
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The first two terms on the right have typical magnitude (10ms-1)/(10km)~10-3s-1, 
while the third has typical magnitude (10ms-1)/(1000km)~10-5s-1. Clearly the 
horizontal components are typically about 100 times as large as the vertical 
component. However, in large-scale meteorology it is the study of the vertical 
component which proves most fruitful, and we shall concentrate on that from now on 
and not pay much attention to the horizontal components. In meteorology the term 
relative vorticity is often used simply to denote this vertical component. The context 
will normally make it clear if the full vector vorticity or just the vertical component is 
intended. We denote the vertical component of the relative vorticity by relζ . Thus 
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As we have seen above, a typical magnitude for this in extra-tropical flow is 10-5s-1. 
 
 
 



Physical interpretation 
 
We can show that relζ  is 
related to the rotation of the 
fluid particles about a 
vertical axis. To see this, 
consider two horizontal 
marked lines of fluid (it 
may help to imagine them 
marked with smoke) and 
follow their motion. We 
label their position at time t 
as AB and AC. Initially AB 
is parallel to the x-axis and 
AC is parallel to the y-axis, 
and we will assign them lengths xδ  and yδ  respectively. 
 
In time tδ  AB moves to A’B’ and AC moves to A’C’. In the general case, when 
the lines reach the new positions they are no longer parallel to the axes nor horizontal. 
 
If A is ( )oo yx ,  then B is ( )oo yxx ,δ+ , and C is ( )yyx oo δ+, . 
 
A’ is readily seen to be the point ( )tvytux oooo δδ ++ , , where the subscript zeros on 

the velocity components are to remind us that they are evaluated at ( )oo yx , . B’ can be 
calculated in a similar way, except for the difference that the velocity components are 
different at B than they are at A. This can be accounted for by a simple first order 
Taylor expansion, giving the horizontal co-ordinates of B’ as 
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Thus  the x-component of A’B’ ( )txOx δδδ +=  

and  the y-component of A’B’ ( )txOtx
x

v δδδδ 2+
∂
∂=      

 

Hence the angle α in the sketch is given by t
x

v δα
∂
∂=  and we see that 

x

v
∂
∂

 is the rate at 

which AB rotates anti-clockwise. 
 

A similar argument shows that 
y
u

∂
∂

 is the rate at which AC rotates clockwise.  

 
If we consider circular lumps of fluid, for which AB and AC contribute equally, we 

see that the average rate of anticlockwise rotation is ��
�

�
��
�

�

∂
∂−

∂
∂

y
u

x
v

2
1

, the minus sign in 

the second term being needed because the convention is anticlockwise is positive. 
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Hence relζ  is twice the instantaneous rate of rotation of circular fluid particles about a 
vertical axis. 
 
We often need to concern ourselves with the vorticity as seen from inertial space. This 
can be found by adding to the relative vorticity the extra effects of the Earth’s 
rotation, i.e. we add twice the Earth’s rate of rotation about a vertical axis. The 
vertical component of vorticity as seen from inertial space is denoted by. Thus  
 

φζζ sin2 Ω×+= relabs   or  frelabs += ζζ  
 
Note that in middle latitudes the Coriolis parameter has magnitude 10-4s-1, so the 
relative vorticity is about an order of magnitude smaller than the absolute vorticity. 
You should have little problem convincing yourself that the typical ratio of relζ  to f  
is the Rossby number. 
 

Vorticity in terms of curvature and shear 
 
This bit still to be written, but the gist of it can be seen from the slides associated with 
this lecture. 
 

Vorticity in a real situation 
 

 
Figure 1: The solid lines are isobars, the dashed lines a isopleths of 
constant positive relative vorticity and the dotted lines are isopleths of 
negative relative vorticity, labelled in units of 10-5s-1. Shading indicates 
rain area and triangles an area of showers. 

Figure 1 above shows the vorticity associated with the surface weather chart in a 
middle latitude cyclone part way through its life cycle. Over much of the chart the 
relative vorticity is smaller than the Coriolis parameter, consistent with the argument 
above, but at the low pressure centre and associated with the fronts there is large 
positive relative vorticity, amounting to a few times the Coriolis parameter. Actually 
the values have been calculated on the basis of the geostrophic approximation, and as 



that overestimates the wind in regions of cyclonic curvature, the true vorticity will be 
somewhat less than the maxima shown here. 

Divergence 
 
Next we introduce the other important derivative of the windfield, namely the 
divergence. Again in many fluid-dynamical applications a three dimensional quantity 

is most relevant, namely 
z
w

y
v

x
u

div
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∂
∂=v . However in the meteorological context 

the horizontal part of this1 is particularly useful, namely 
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If δτ  is an element of volume, and Aδ  is an element of horizontal area, then we can 

show that 
Dt

D
div

δτ
δτ
1=v  and 

Dt

AD

A
div hh

δ
δ
1=v . Thus hhdiv v  is the fractional rate of 

increase of an element of area of a marked fluid particle. hhdiv v  should, strictly 
speaking, be called the horizontal divergence, but often the “horizontal” is dropped as 
3-D divergence is not widely used in meteorology. 
 
Divergence is positive when the area is increasing. 
Divergence is negative when the area is decreasing. 
 
Negative divergence is often referred to as convergence. 
 

Smallness of the horizontal divergence. 
 
The expression for the divergence contains terms which superficially are similar to 
those in the definition of vorticity, namely horizontal gradients of the horizontal wind 
components. However it turns out that the divergence is typically an order of 
magnitude smaller than the vorticity, as there is an approximate cancellation between 
the two terms in the definition (Eq 1). To see this, first consider the divergence of the 
geostrophic wind:- 
 

y

f

x

p

fxy

p

yx

p

f

x

p

fyy

p

fxy

v

x

u
div gg

gh

∂
∂

∂
∂−

�
�
	



�
�

∂∂
∂+

∂∂
∂−=

��
�

�
��
�

�

∂
∂

∂
∂+��

�

�
��
�

�

∂
∂

∂
∂−=��

�

�
��
�

�

∂
∂

+
∂

∂
=

2

22 11

11

ρρ

ρρ
v

 

 

                                                 
1  Of course the divergence is a scalar quantity; this talk of 2 or 3 dimensions refers to the wind 
components used 



We have neglected some horizontal gradients in density as being small. Hence we 
have deduced that  
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At 45oN 17
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φ , so that  

 
16171 101010~ −−−−− = msmmsdiv gh v . 

Now we have already seen that both 
x

ug

∂
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 and 
y

vg

∂
∂

 have typical magnitudes of 

1510 −− ms . Thus the sum of these terms is an order of magnitude less than either of 

them taken individually. In other words 
x

ug

∂
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 and 
y

vg

∂
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 are approximately equal and 

opposite to each other. If they were exactly equal and opposite (so that the sum was 
zero) then the geostrophic flow would be said to be non-divergent. What we have 
shown is that the geostrophic wind is approximately non-divergent. 
 
It follows that the true wind must also be approximately horizontally non-divergent 

because ahghhh divdivdiv vvv +=  and g
o

a R
vv

1
~ , giving 

1510
10
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~~ −− s
L
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Rdiv oav . Thus 1610~ −− sdiv hh v , so the two terms cancel 

approximately in this quantity also. 
 

Estimation from wind measurements 
 
Note that this cancellation makes the horizontal divergence much harder to estimate 
from observations than the relative vorticity, because a ten percent error (say) in the 
horizontal wind components will translate into a ten percent error in relative vorticity, 
but into a hundred percent error in horizontal divergence, the difference in behaviour 
arising from the cancellation in the latter case. 


