
Chapter 8: Wind distribution in the boundary layer: 
The Ekmann Spiral 
 
In this chapter we consider how friction changes the wind in the layer near to the 
surface. The layer affected by friction with the surface varies in depth with location 
and occasion according to the state of the convection, the strength of the pressure 
gradients and whether there is large-scale ascent in the middle levels of the 
troposphere. Sometimes it is called the planetary boundary layer. Often there is quite 
a sharp transition between the boundary layer and the layer of free atmosphere above 
it in which friction is unimportant. A typical depth of the planetary boundary layer is 
1 km, but it can be just a few hundred meters, and sometimes it could be considered to 
fill the troposphere. It is beyond our scope to try to treat all the possible varieties. 
Here we shall simply give a simple treatment of what might be considered the basic 
case.  
 
We shall assume that the wind in the boundary layer is steady and does not vary in the 
horizontal. A better way of stating this is that the effects of variations in time and of 
horizontal gradients are small compared with the effects of the vertical momentum 
transports. This feels plausible considering the boundary layer is perhaps only a 
kilometre deep, while the horizontal variations happen over several hundreds of 
kilometres, and we have seen that the time variations are compatible with the spatial 
scales through the typical velocities. Of course it is dangerous to simply assume that 
we can neglect these time variations and horizontal variations, so a sensible procedure 
once we have found the solution would be to check up on the size of terms in the 
equations which we left out compared with those we retained. This assumption of 
steadiness and no horizontal variations means that there will be no relative 
acceleration, so the equation at the end of the last chapter simplifies to 
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A further assumption is that the variations in density in the boundary layer are small 
compared with the variations in velocity. This approximation is somewhat cruder than 
the previous one, but it allows us to reach an analytical solution. Applying the 
approximation the equation simplifies to 
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The simplest case in which we can solve this equation is when the eddy viscosity, K , 
is independent of height. This reduces the equation to  
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Finally we shall assume that the geostrophic wind is independent of height. To exploit 
that, expand the wind into geostrophic and ageostrophic components agh vvv += . 
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This equation can be solved for suitable boundary conditions. As height is the only 
independent variable in this equation, we can replace the partial derivatives with total 
derivatives, We shall write it in component form as the coupled pair of equations:- 
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These are simultaneous equations. One way of solving them is by brute force 
elimination of one variable to leave a 4th order equation for the other. However clever 
trick which allows us to remain dealing with 2nd order equations is to define a 
complex variable U , say1, by aa ivuU += , where 1−=+i . If we multiply the second 

equation by i  and add it to the first we get  
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This has solution ( ) ( )ziBziAU ββ −++= expexp , where A  and B  are constants to be 

determined by the boundary conditions, and ( )
K

f
i

K

if

2
1−=−=β .   

 
One boundary condition comes from considering what happens at great heights. U is 
effectively the ageostrophic wind, and the only thing which causes ageostrophy in this 
problem is the friction at the surface. Hence we expect that 0→U  as ∞→z . This 

will require that 0=B , because the term involving B  can be written 
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exp . The second exponential always has magnitude 1, but 

the first one grows exponentially as z increases. Thus we need 0=B  to confine our 
solution to near to the surface. Leaving:- 

                                                 
1 Note that this is a different use of U from our previous use of it as a typical windspeed. 



( )ziAU β+= exp  
 

If we write 
K

f

2
≡α , then the previous expression becomes  

 
( ) ( )zizAU αα −−= expexp , which can be written in the form θire  with 

( )zAr α−= exp  and zαθ −= . This makes it easy to see that the magnitude of U 
decreases exponentially as z increases and the direction of U  in the complex plane 
rotates uniformly clockwise as z increases. Such a curve is known as a geometric 
spiral. 
 
The sketch  in Figure 1 shows the locus 
of U  in the Argand diagram. The real 
and imaginary axes are shown as 
dotted lines. O is the origin of these 
axes. P shows the general position of 
U  for height z . As z increases the line 
OP rotates clockwise and P moves 
along the curve, closer and closer to O. 
S shows the position for 0=z , where 

AU = . For the moment A  is 
arbitrarily chosen, but, as we have 
already stated, we need to determine it 
from the boundary conditions.  
 

PQ is the tangent to the curve. We note that ( ) UiziAi
dz

dU βββ == exp . This means that 

the tangent PQ is rotated from OP by the same angle as βi is rotated from the real axis 
(since when you multiply to complex numbers together the product is obtained by 
multiplying their magnitudes and adding their arguments. 

Now )1( +−= iiβ  so this has argument 
4

5π
. It follows that OPQ∠  is o45

4
=π

. Note 

that this angle is independent of z . For this reason the geometric spiral is sometimes 
also called the equi-angular spiral, as it is the locus of a point moving so that the 
direction of movement is at a constant angle to its displacement vector from the 
origin. As the angle is constant, the acute angle made between the tangent at S and the 
line SO is also o45 . 
 
Various boundary conditions are possible according to the degree of approximation 
considered acceptable in representing the physics. We shall use the “no-slip” 
boundary condition. This assumes that the surface roughness brings the air which is in 
contact with the surface to a standstill, so that the total wind is exactly zero at the 
surface there. If we denote the geostrophic wind in the complex plane by 

ggg ivuU += , then the total wind is the sum of gU  and U . At the ground this sum 

must be zero, which requires that gUA −= . 
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Figure 1: Ageostrophic wind 



Since the total wind is obtained by adding gU  to the ageostrophic wind previously 

found, we get the situation sketched in 
Figure 2. This has some similarities with the 
Figure 1 but the origin of the axes is now at S 
and the curve OPS now represents the locus 
of total wind as height changes. The line OP 
has not been drawn in, but it would represent 
the ageostrophic wind as previously. SP 
shows the total wind at the general height z . 
The line SO represents the geostrophic wind. 
As z  increases, P moves round the curve in 
the direction of O, approaching O 
asymptotically. As z  decreases, P moves round the curve 
nearer to S, that is, as we get nearer and nearer to the 
ground the wind gets less and less. The tangent SR at the 
surface is shown. Just above the surface the wind is in the direction of that tangent. 
We showed when discussing Figure 1 that OSR∠  is 45o. Hence the surface wind 
blows at an angle of 45o to the geostrophic wind, and is directed towards the low 
pressure side 
 
As the variations expressed in our solution extend to infinity, albeit getting always 
closer to the geostrophic wind, there is no obvious top to the boundary layer in our 
treatment. Accordingly it is usual to consider the top to be where the total wind is first 
in the same direction as the geostrophic wind. This is readily seen to happen at a 
height tz , say, where the ageostrophic wind is first lined up with the geostrophic wind 
and in the same direction. This is in the opposite direction to A (which is the 
ageostrophic wind at the surface where the total wind is zero. For the ageostrophic 
wind to have rotated π  radians from A we need πα =tz , so that 
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The eddy viscosity is difficult to measure directly, but the wind can be measured 
much more readily, and we typically find, by studying the wind direction, that tz  is 
about 1km. This allows us to estimate typical values of the eddy viscosity, K, as 5 
m2s-1. 
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Figure 2: The total wind 


