Problems on Chapter 7: Friction and Eddy Viscosity

Q 7.1: Show that if an overbar (\overline{x}) represents a time mean, and a dash (x') represents a departure therefrom, that for general quantities s, r in a flow which is steady (or for which the time mean varies so slowly that changes in the time-mean can be neglected) that

$$\overline{(s')}=0$$

 $\overline{s} = \overline{s}$,

```
and hence that
```

- $\overline{s \cdot r} = \overline{s} \cdot \overline{r} + \overline{s' \cdot r'} \cdot \mathbf{s'}$
- **Q 7.2:** Suppose $u = u_0 (4 + \cos(ht + \varepsilon))$ and $w = w_0 (1 + \cos(ht))$, with $u_0 = 3 \text{ ms}^{-1}$ and

 $w_0 = 0.5 \text{ ms}^{-1}$ and assume $\rho = 1.2 \text{ kg m}^{-3}$. Sketch the instantaneous value of u'w' and calculate the mean and eddy contributions to the flux of momentum for

- (a) $\varepsilon = 0$,
- (b) $\varepsilon = \pi/4$,
- (c) $\varepsilon = \pi/2$,
- (d) $\varepsilon = 3 \pi / 4$.
- Q 7.3: If \overline{u} has the value of 8 ms⁻¹ at a height of 2 m and 10 ms⁻¹ at a height of 3 m, estimate the vertical flux of x-momentum for an occasion on which K was 4 m²s⁻¹.