
Chapter : Friction 
 
Molecular friction (viscosity) is unimportant in large-scale flow, as the velocity shears 
are too small. However there are almost always systematic motion systems of a scale 
smaller than the scale of interest which have an effect analogous to viscosity. For 
instance near the surface the presence of obstacles such as trees or buildings or 
uneven ground produces swirls and eddies on the scale of centimetres to many meters. 
Moreover the thermally induced motions associated with cumulus clouds produce 
systematic motions with the scale of kilometres. These motions can transfer 
momentum from one part of the fluid to another by interchanging air between fast and 
slowly moving layers of air. These small-scale motion systems last only for a few 
seconds or several minutes, so one way to consider their effects is to regard the flow 
as the combination of a slowly varying part (the part on the scale we wish to study) 
and a rapidly fluctuating part (the small-scale “eddies” or swirls) superimposed upon 
it. (See anemometer trace in the slides pertaining to this lecture.) 
 
We can isolate the slowly varying part by applying a filter comprising the time 
average, which we will denote by an overbar. Thus for a variable s  we define a local 

time mean s  centred on the time ot by 
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where Q  is the time interval which is long compared with the eddy motion, but short 
compared with the time-scale of the large-scale flow. Q may be chosen in the range 
15 to 30 minutes for instance. We shall denote the departure from the mean by a dash, 
and call it the “eddy” part of the flow. Thus the eddy part of s  is given by 
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We note a pair of relations deducible from this definition which we will need later, 

namely ss =  and 0=′s . 
 
We can now consider how fluxes of 
momentum are carried by the eddy and 
mean parts of the flow. Specifically we 
will begin by deriving the vertical flux 
of x-momentum. 
 
Consider a small horizontal area Aδ . In 
time tδ  the volume passing through 
this area is Atw δδ , so the mass passing 
through is Atw δδρ  and the x-
momentum passing through is 

Atwu δδρ . Thus the flux upwards of x-momentum per unit time, per unit area through 
a horizontal area is wuρ . 
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What we have just worked out was the instantaneous flux. The time mean is wuρ . 

Writing uuu ′+=  etc this becomes ( )( )( )wwuu ′+′+′+ ρρ . Now it turns out that 
the fractional variations in density are much smaller than those in the velocity 
components, as temperature and pressure vary by less than a percent or so, whereas 
the vertical velocity may change by 100 percent and the horizontal velocity by many 
10s of a percent. Thus the variations of density can be neglected compared with those 
in the other quantities, and the vertical flux of x-momentum can be written1 
( )( )( )wwuu ′+′+ρ ( )( ) ( )wuwuwuwuwwuu ′′+′+′+=′+′+= ρρ  

( ) ( )wuwu ′′+= ρρ . . 
 
The first term on the right hand side consists entirely of terms from the large-scale, 
slowly varying flow, whereas the second term arises from the eddies, and hence is 
called the eddy flux of x-momentum. The first term represents the momentum fluxes 
which are already expressed in the equations of motion which we deduced and used in 
earlier chapters, while this eddy flux of x-momentum represents a new phenomenon 
which is not yet included in those equations and which therefore requires an 
amendment to them. There are analogous expressions for the vertical flux of y-
momentum.2 We can regard this eddy flux of momentum as a frictional force or eddy 
viscous force produced by eddy viscosity. It can be regarded as a force (per unit area) 
in the x-direction exerted on the fluid above the surface by the fluid above. Clearly it 
will be positive if the u’ and w’ are positively correlated, that is if upward moving air 
is travelling (in the x-direction) faster than the average flow and downward moving 
air is travelling slower than the average. 
 
We may write ( )wuxz ′′= ρτ  for the upward flux of x-momentum, and ( )wvyz ′′= ρτ  

for the upward flux of y-momentum. 
 
Now consider the flux of x-momentum 
into and out of a box with horizontal 
area δA , lying between the heights of z 
and z+δz. The x-momentum entering 
the box through the bottom surface in 
time δt is ( ) tAxz δδτ .  while the x-
momentum leaving the box through the 

top surface is tAz
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Since the mass of the box is zAδρδ , the change in velocity in time δt corresponding 
to the change in the x-momentum in the box produced by the difference of these two 
fluxes is  

                                                 
1 Note that the dots which appear in the next few expressions denote an ordinary multiplication. If I 
miss them out, then the overbars join up when I wish to show them being separate.  
2 And even of the eastward flux of y momentum, but the fact that the large scale flow has horizontal 
dimensions which are very large compared with the vertical ones makes the effects of this small 
compared with the vertical fluxes, so that we do not need to consider them here. 
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Hence the acceleration produced by the eddy viscous forces in the x-direction is  

z
xz

∂
∂− τ

ρ
1

 

Thus the vector acceleration can be written 
z∂

∂−
ρ
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, where we have written 

( ) ≡yzxz ττ ,  for the vertical flux of (horizontal vector) momentum. 

 
We see therefore that we can incorporate the eddy viscosity into the equations of 
motion by adding this term to the equations to give 
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The quantities the left and the pressure gradient term are understood to be written in 
terms of the mean flow quantities. Hence they should strictly be written with 
overbars, but in practice no difficulty arises f rom missing them out, and it makes for 
simpler writing and typography. 

 
The problem now is to find the eddy momentum fluxes. Our fervent hope is that these 
are determined by the properties of the mean flow alone, because then, provided we 
can write expressions for the eddy fluxes in terms of the mean-flow variables, we will 
end up with equations which only contain mean-flow variables. By analogy with 
molecular friction, we hope that the vertical flux of momentum is proportional to the 
shear in the vertical of the horizontal wind. If u  increases upwards we expect xzτ  to 
be directed downwards (as interchanging fluid between the fast-moving upper layers 
and the slower moving lower layers will bring x-momentum downwards) and to be 

proportional to 
z

u
∂
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. Moreover the denser the fluid, the more momentum is 

transferred. Thus we might expect a relationship like 
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where K  is a constant. 
 
This relationship works surprisingly well, especially in conditions of neutral stability. 
K  is found to vary with distance from the surface close to the surface, and to depend 
on how rough  the surface is. It also depends on the stability, as might be anticipated, 
since in stable conditions buoyancy forces will inhibit the vertical exchange of air 
parcels. Given this variability it may be wondered if we have made any advance by 
adopting this formulation, but providing the nature of the variability can be found, it 
has allowed us to obtain an expression for the effects of the eddies which can be 
evaluated entirely on the basis of the mean flow quantities. 
 



K  is called the coefficient of eddy viscosity by analogy with the (kinematic) 
coefficient of molecular viscosity. \sometimes it is called the eddy diffusion 
coefficient, as it is often the case that heat and moisture are diffused in a similar way 
to momentum and with the same constant. It is about 6 orders of magnitude larger 
than the coefficient of molecular viscosity. We shall show in the next chapter one way 
of estimating it, which gives typical values of 125~ −sm . 
 

We shall have the analogous relation 
z

v
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∂−= ρτ  and the combined vector 

form,
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K h
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∂−= vρ , leading to  
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All the quantities in this equation are now on the resolvable scale, but we have 
dropped the overbar (and will continue to do so from now on) to simplify the 
typography. 


