
Chapter 6: Other vertical co-ordinates and the thermal 
wind 
 

Other vertical co-ordinates 
 
There are advantages in having other quantities besides z as the vertical co-ordinate. 
Several have been proposed for use in meteorology. One idea is to use material 
surfaces in the fluid. Suppose for instance that we could introduce into the atmosphere 
at a given instance and at each place a certain amount of smoke with a mixing ratio 
which depended only on its height at that instance. We could (for a short time at least) 
then subsequently locate each air parcel by quoting its x-coordinate, its y-coordinate 
and the mixing ratio of the smoke (assuming it was not changed by diffusion). That 
seems a fairly complicated thing to do. Indeed it is, but the use of a coordinate system 
which moves with the flow in that way turns out to have several advantages in some 
contexts1.  
 
If the motion is known to be statically stable and the processes are nearly adiabatic, 
then potential temperature turns out to be a good choice for vertical co-ordiante, 
because vertical velocities can be very hard to estimate in conventional height co-
ordinates, but in the θ system “vertical” velocities are very simply related to the 
heating rate, and this can be much more readily calculated. Indeed, if the motion is 
exactly adiabatic, motion in the θ system is two-dimensional, which gives us certain 
conceptual advantages too.  
 
Other co-ordinates which have been proposed include pressure, and various functions 
of pressure, such as ln(p), and pressure divided by the pressure at the surface. This 
latter co-ordinate is particularly useful because the surface looks simple in this 
system, being simply where the coordinate has the value 1. This has some advantages 
when writing computer codes to predict weather and climate. 

Use of pressure as vertical co-ordinate 
 
We will only pursue one system of vertical co-ordinates here, namely the one in 
which pressure is used as the vertical co-ordinate. In this system instead of the co-
ordinates being ( )zyx ,, , they are ( )pyx ,,  In the new system z  is a dependent 
variable. The idea of using pressure as a vertical co-ordinate is most useful when the 
atmosphere is close to being in hydrostatic equilibrium. This is not strictly necessary, 
but some of the principal advantages are lost in the case when hydrostatic equilibrium 
does not obtain. What is absolutely necessary is that pressure is a monotonic function 
of height, otherwise the mathematical transformations cannot be performed. Clearly 
this condition is satisfied in the case of hydrostatic equilibrium, because the pressure 
at any height is just the weight per unit area of the atmosphere above that height and 
this always decreases with height. 
 

                                                 
1 Co-ordinate systems which follow the motion of the fluid are said to be Lagrangian, whereas static 
systems are Eulerian, after two different ways of developing equations in fluids by these two scientists. 



In these alternative co-ordinate systems the surfaces on which each co-ordinate is 
constant may deform with time as the fluid moves. Note too that this system is not an 
orthogonal co-ordinate system, as the surfaces of constant pressure are not orthogonal 
to those of constant  x  or y . 
 
We shall need velocity components of the particles in the new system. These are 
defined in the obvious way:- 
 

Dt
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Dp=ω . 

 
Note that the first two components mean exactly what they mean in the height co-
ordinate system; we have not resolved any vectors along the surfaces of constant 
coordinate as would have been the case if we were designing an orthogonal co-
ordinate set. Note too that the third equation defines omega as the replacement for the 
vertical velocity. If the particles are moving upwards in height co-ordinates (positive 
w ), then ω  will usually be negative.  
 

Following the same procedure as we did for 
Dt

D
 in height co-ordinates, it is easy to 

show that 
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subscripts denote which variables are held constant while the differentiation is 
performed.  This is completely analogous to the height-co-ordinate expression. We 
shall drop the subscripts from now on, as it is usually obvious from the context which 
co-ordinate system is under consideration and write 
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Eq 1 

 
Of the three terms in the horizontal equation of motion, the acceleration is now easy 

to write down, as it is simply hDt

D
v . The Coriolis acceleration is even easier, as it is 

unaltered , being hf vk ∧ . This leaves just the pressure gradient term to cast in the 
new co-ordinates. 

The Geopotential 
It will prove useful to introduce here the concept of the geopotential. This is will be 

denoted by ϕ  and is defined by gdzd =ϕ  or, on integrating, �=
z
gdz

0
ϕ .  

 
NOTE that ϕ  is one way of writing the Greek symbol phi. Another way of writing it 
is φ . We have used the latter form (straight phi)  to mean latitude, and will try to stick 
to that usage, reserving ϕ  (curly phi) for geopotential. 
 



It is obvious from the definition that ϕ  is the work done in raising a unit mass from 
mean sea level to the height z . 
 
From the hydrostatic equation we clearly have that ρδϕδ −=p . 
 
It is often convenient to express ϕ  in terms of a height-like variable, *z  say, defined 

by 0
* / gz ϕ≡  where 2

0 81.9 −≡ msg . *z  is called the geopotential height. If the 
geopotential is quoted in this way in terms of the geopotential height, it is often said 
to be expressed in geopotential meters. 

Pressure gradient term 
 
The x-component of the specific 

pressure gradient force is 
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in z-co-ordinates 
 
Now the sketch shows a section 
parallel to the x-z axis. We see that 
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(since Ap  = Cp  as they are not on the same pressure surface). 
 
Now by the hydrostatic equation ρδϕδρ ==− zgpp CB . 
 
Hence the x-component of the specific pressure gradient force is 
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Thus the horizontal equation of motion can be written 
 

ϕphh f
Dt
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or 

*
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Eq 2 

 
The subscripts 0  and the superscript *  are usually dropped with little ambiguity. We 
shall follow this practice. 
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Geostrophic wind in pressure co-ordinates 
 
The geostrophic wind gv  is defined so that its horizontal Coriolis acceleration is 

exactly produced by the horizontal pressure gradient force. So zgf g ∇−=∧ vk , 

giving  
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Eq 3 

 
Just as we can draw maps showing contours, or isolinses, of pressure on a constant 
height surface, we can also draw maps of the height of a surface of constant pressure. 
 
INTEND TO INSERT DIGITISED WEATHER MAP HERE. ONE IS TO BE 
FOUND IN THE SLIDES 
 
The geostrophic wind is related to gradients of height of a constant pressure surface in 
a manner analogous to its relation to the gradients of pressure at a constant height. 
That is, the geostrophic wind is directed perpendicular to the gradient of height. The 
sense is such that in the northern hemisphere, facing in the direction towards which 
the geostrophic wind is pointing, low heights are on the left. Note that factor relating 
the magnitude of the geostrophic wind to the magnitude of the height gradient 
depends on latitude (through f ); there is no extra variation arising from the variation 
of density with height as with the height co-ordinate form of the equation. For people 
studying weather maps without computer aids, and who are therefore using graphical 
tools, this is a distinct advantage, as one tool works for all pressure levels. 
 
 

In this sketch, which shows a section o 
f a map of the 500hPa surface as it 
might appear in a northern hemisphere 
case, the dotted lines are contours 
(isolines of constant height), labelled in 
meters. The geostrophic wind is 
parallel to the contours and its 
magnitude can be calculated from the 
separation of the contours 
 

Change in geostrophic wind 
with height 
 
An interesting and very useful insight arises if we think about the difference in 
geostrophic wind on two pressure levels. Consider two pressure surfaces with 
pressures which we will call 1p  and 2p , with 21 pp > , so that 2p  lies above 1p . Now 
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let their heights be 1z  and 2z . These heights are functions of time and of horizontal 
position, of course. 
 
Now let 1gv  and 2gv  be the geostrophic wind on the respective surfaces. The vector 

difference between the geostrophic winds at the upper level and lower level will be 
denoted by Tv  for reasons which will become apparent.  Thus 
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Eq 4 

We have written ( ) zzz ′≡− 12  For obvious reasons z′  is called the thickness of the 
layer between pressure levels 1p  and 2p . Clearly Tv  is related to z′  in exactly the 

same way that gv  is related to z , so that the thermal wind blows parallel to the lines 

of constant thickness and so on. 
 
We saw in chapter 2 that  
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where T  is the average2 temperature of the layer. Putting this into Eq 1Eq 4 gives 
 

T
p

p

f

R
T ∇∧��

�

�
��
�

�
= kv

2

1ln  

Thus Tv  is associated with the temperature field (vertically averaged at each location) 

in a similar way to the way gv  is related to z . That is to say, Tv  lies parallel to the 

isotherms (lines of equal T ) with cold air to the left in the Northern Hemisphere, and 
with a strength which is inversely proportional to the isobar spacing and to the sine of 
latitude. It is this relation to the thermal structure which led to the name thermal wind 
for Tv . 
 

Tv  is an approximation, correct to order Ro to the difference in actual wind between 
two levels, just as the geostrophic wind is an approximation to the wind at a given 
level. 
 
Often it is possible to see that the wind is different at different levels of that 
atmosphere by comparing the motion of high clouds and low clouds. From this it is 
possible to work out in which direction the air is warmer and which colder and hence 
get a qualitative forecast of whether the temperature will rise or fall in the next few 
hours, according to whether the warm air is blowing towards or away from the 
observer. 

                                                 
2 W.r.t. ln p 


