
Chapter 5: Balance of forces in synoptic scale flow 
 

Horizontal forces and acceleration 
 
In this chapter we shall look first in some detail at the consequences of the scales of 
motion for the sizes of these forces, leading us to deduce an approximate relationship 
between the wind and the pressure distribution. 
 
Our starting point is the equation of horizontal motion from the previous chapter.  
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Eq 1 

horizontal = specific Coriolis  + specific pressure  
acceleration  force    gradient force 

 
Putting these forces together (and recalling that we are only discussing horizontal 
components here) we get the situation shown to the right. The direction of the isobars 
(thin curves) and the direction of the wind (broad arrow) have been arbitrarily chosen. 
The specific Coriolis force is perpendicular to the wind and the specific pressure gradient 
force is perpendicular to the isobars. The nett resultant of these two forces produces the 
acceleration, shown in the sketch as the open arrow. 
 

The Rossby number 
 
It is useful to consider the typical magnitudes and relative sizes of the forces and the 
acceleration.  
 
The specific Coriolis force has magnitude hfv , so if U is typical magnitude of the 

horizontal wind, the specific Coriolis force has magnitude Uf . The pressure gradient 

force is a little trickier to estimate directly, so we will next consider the acceleration. If T  

is a typical timescale, then basing our estimate on t
h

∂
∂v the acceleration has typical 

magnitude TU / . Alternatively if a typical horizontal length scale in the motion under 
study is L  and we base our estimate on hh vv ∇  we obtain the estimate LU /2 . This is 
consistent with the previous estimate provided that T  is the time an air particle takes to 
traverse the system, because then ULT /= . 
 
A useful measure is the Rossby number, oR , defined as the typical ratio of the relative 
acceleration to the specific Coriolis force. We may expect this to be different for different 



scales of motion. For instance if the period of rotation of the frame of reference is very 
long compared with the timescale of the system, rotation will presumably be unimportant 
and the Rossby number would very small. Using our previous estimates we obtain oR  = 

(typical accel)/(typical specific Coriolis force) = ( ) ( )UfLU ÷/2 , giving  
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That is the general expression. What is its magnitude for a typical mid-latitude weather 
system? These systems are often said to be “of synoptic scale”. This name was coined 
when weather maps were analysed by hand. The practice grew of plotting all the 
observations for a given time on a regional chart (say Europe and the North Atlantic). 
This was known as the “synoptic chart” (Greek for “simultaneous view”). These charts 
are dominated in middle and high latitudes by the familiar cyclones and anticyclones 
(areas of low and high pressure) which control our weather. For such systems we observe 
that typically 110 −≈ msU  and mkmL 6101000 =≈ . We noted in the last chapter that 

1410 −−≈ sf , so that  
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That is, the relative acceleration is an order of magnitude smaller than the specific 
Coriolis force. This can only happen if the Coriolis force and pressure gradient force are 
approximately in balance (i.e. equal and opposite), so that their nett resultant is small. 
 
Note that we have not yet given an explanation of why the Coriolis force and pressure 
gradient force are approximately equal and opposite, we have merely noted that they 
must be to be consistent with the typical space and timescales of the phenomena. 
 

The Geostrophic Wind 
 
The approximate balance between the Coriolis force and the pressure gradient force in 
middle latitudes is so important that it has proved useful to introduce a reference or 
hypothetical wind, gv ,called the geostrophic wind, for which the balance is exact. Thus 

the geostrophic wind is defined, for a given pressure gradient, as that wind whose 
Coriolis force is equal and opposite to the pressure gradient force. [Geostrophic come 
from the Greek for “earth turning”]. 
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It is clear that the geostrophic wind is parallel to the isobars and that if you stood with 
your back to the geostrophic wind in the northern hemisphere, low pressure would be on 
your left, while in the southern hemisphere it would be on your right (as f  has the 
opposite sign there). The strength of the geostrophic wind is inversely proportional to the 
isobar spacing. For a given pressure gradient (or isobar spacing) the geostrophic wind 
increases towards low latitudes as it is inversely proportional to f . 
 
The usefulness of the geostrophic wind is that it is a reasonable approximation to the 
actual wind (obviously correct to order of the Rossby number). Thus a chart of isobars on 
a surface of constant height allows us to visualise and to calculate the true wind to a 
reasonable approximation. 
 
Note that we have neglected frictional forces, so, in the lowest few hundred meters of the 
atmosphere, where friction with the ground may be appreciable, the geostrophic 
approximation (that gvv ≈ ) is not so good as it is aloft. 

 
The geostrophic approximation becomes poorer as the equator is approached (for systems 
of the given space and velocity scales), because f  becomes smaller and oR  larger. At 

and near to the equator, where f  is zero, the Coriolis force is negligible and the relative 
acceleration must equal the specific pressure gradient force.  
 

The ageostrophic part of the wind 
 
The difference between the true wind and the geostrophic wind is known as the 
ageostrophic wind component or simply as the ageostrophic wind. If we denote this by 

av , then ga vvv −≡  and  
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Thus the ageostrophic wind is perpendicular to the acceleration and directed to the left 
from it in the Northern Hemisphere (right in the Southern Hemisphere). 
 

Estimating the acceleration from the pressure field 
 
For synoptic scale motion in middle latitudes, the geostrophic approximation can be used 
in the expression for the acceleration, thus:- 
 



( )

( )ogg
g

o
g

gg
gh

hh
hh

RO
t

RO
z

w
tz

w
tDt

D

+∇+
∂

∂
=

+
∂

∂
+∇+

∂
∂

=
∂

∂+∇+
∂

∂=

vv
v

v
vv

vv
vv

vv

.

..
 

 
The final step in the above reasoning (i.e. dropping the term in the vertical velocity) is not 
self-evident and will be justified in a later chapter. That step too is correct to order of the 
Rossby number. 
 
Since we can find the acceleration in terms of the pressure field, we can use this 
information about the acceleration to give a more accurate estimate of the true wind than 
is afforded by the simple use of the geostrophic approximation. 
 

Steady circular flow 
 
There are some situations in which we can write down an exact expression for the 
acceleration in terms of the real wind and solve for the windspeed. A special case, which 
has some resemblance to commonly occurring flow patterns, is that of steady circular 
flow round circular isobars. This has come to be known in the literature as the gradient 
wind as it was the earliest more accurate (than geostrophic) estimates of the windspeed 
for a given pressure gradient. 
 

Cyclonic case 
 
We consider first the cyclonic 
case. The sketch represents 
concentric isobars with low 
pressure in the centre. In the 
Northern hemisphere The flow 
can be expected to be clockwise 
round the low. The specific 
pressure gradient force is 
directed towards the centre of the 
low, and the specific Coriolis 
force is directed perpendicular to 
the wind and is outwards.  
 
The acceleration is produced by the vector sum of the two forces, which in this case is 

directed inwards and has magnitude R
V 2

 , where V  is the windspeed and R  is the 

distance to the centre of the cyclone.  
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The specific pressure gradient force has magnitude p∇
ρ
1

, but it is convenient to write 

this as gfV , where gV  is the magnitude of the geostrophic wind. The specific Coriolis 

force has magnitude fV . 
 
Thus we have 
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Eq 2 

Since the left hand side of this equation is always positive, we shall have that the 
geostrophic wind is greater than the actual wind in this case. i.e. the geostrophic 
approximation over-estimates the wind in the cyclonic case1.  
 
Eq 2 is a quadratic in the windspeed which has solutions 
 

2

422
gRfVfRRf

V
+±−

= . 

 
We appear to have found two solutions. Clearly the one we want should tend towards the 
geostrophic wind as R  tends to infinity, since this leads to straight isobars and negligible 
acceleration. Moreover this will obviously be the solution from the + sign, as the other 
solution is entirely negative, which would be in the wrong direction. Thus the gradient 
wind in the cyclonic case (low pressure centre case) is given by  
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The solution with the – sign that we rejected would, as already stated, be flowing 
clockwise (anti-cyclonically) round this low pressure, which is never observed in 
practice. It can be shown, by an analysis too advanced for this course that, this anomalous 
flow would be unstable. That is, although the forces balance, a slight perturbation would 
lead to an exponentially growing lack of balance in a way which destroys the circular 
flow. In the true physical solution with the + sign, any small perturbation produces 
changes in the forces which tends to restore the balance. 
 

                                                 
1 (Note that if this remains true in the Southern hemisphere despite the change in sign of f , because we 
would have to draw the diagram differently in the southern hemispheric case. An alternative way of 
thinking about it is to keep the same diagram but then the windspeeds would be negative quantities because 
they would be directed in the opposite sense to what we have drawn here) 
 



Anticyclonic case 
 
We turn now to the anticyclonic case. In 
principle we can obtain the details of this case 
by simply changing the sign of gV  in the 

foregoing and then looking at the solution of 
the quadratic bearing in mind that we expect 
the flow to be clockwise. However it is 
probably easier to redraw the diagram and 
hence redefine the sign conventions as in the 
figure to the right.  Now we have  
 
Accel=s.c.f.-s.p.d.f. 
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with solutions 
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To choose the correct sign we need gVV →  as ∞→R . It is left as an exercise to show 

that this means that the – sign is needed, so that the solution is  
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Eq 3 

Again the anomalous solution with the other sign can be shown to be unstable. 
 
Considering Eq 3, it is apparent that to obtain real roots, we need  
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4
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Thus in the anticyclonic case there is a limit to the pressure gradient. 
 
At the centre of anticyclones, pressure gradients are small, while in cyclones there is no 
such limit. There are no limits either in tornadoes and hurricanes. In these the Coriolis 
force is, of course, negligible and the centripetal acceleration is produced entirely by the 
pressure gradient force. 
 

accel 

s.p.g.f

. 

s.c.f. 

L 

H 

V  

R 


