Chapter 4: The Tangent Plane approximation

The Tangent Plane Approximation

If we regard the Earth as a sphere, a natural co-ordinate system for writing down the
component form of the equations of motion would be spherical co-ordinates (say
longitude, latitude and radial distance)'. For weather forecasting and climate prediction
this would be essential. However, that leads to levels of complexity of the mathematics
which are too great for this course, in which we wish mostly to get some insight into the
physical principles at work in weather systems and these can be illustrated in an
approximate system which can be treated more simply.

The approximation we shall use is known as the tangent plane approximation, as the idea
is to treat the earth as locally flat. That is,
we consider that the earth’s surface in the

o y 5 z vicinity of a point stays close to the
\Qy tangent plane. Take a position O on the
(0] surface of the Earth. Then we shall take
o) 2 rectangular co-ordinates Oxyz such that

Oxy is the plane which is tangential to the
Earth’s surface at O, with Ox directed
® eq eastward, Oy to the North and Oz directed

vertically upwards at O. That can, of
course, be done with no approximation. In the tangent plane approximation we assume
that the surface of the Earth in the vicinity of O remains in the Oxy plane and that
apparent gravity is directed parallel to Oz (but downwards) even at finite X, y
displacements from the origin. We further assume that on the lines parallel to Ox and Oy
are lines of latitude and longitude respectively, so that latitude and longitude form a
regular recangular grid on the tangent plane. (Contrast that with the situation on a
stereographic projection where the lines of latitude and longitude are determined by

'Going to greater levels of sophistication we could recognise that the earth is an oblate spheroid and use a
co-ordinate frame suitable for those (a series of spheroids and hyperboloids of revolution), though in
practice that is not worth the effort as other approximations are needed to the physics which make this extra
accuracy pointless.



projection from the antipodal point onto the tangent plane. In that projection the lines of
latitude are circles and the lines of longitude converge.)

We shall write the unit vectors in the direction of the x,y,z directions as 1.J,K and the

components of as (M, v, W) . Then we have that
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If @is latitude, then it is clear from the sketch and simple geometry that
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So that
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Putting all these together gives

X-momentum equation
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Approximations for large-scale flow

When these equations are applied to synoptic-scale flow in mid-latitudes, we find that
some of the terms can be neglected. The timescale of such flows is around a day (i.e. in
the range of a significant fraction of a day to several days), while the horizontal velocities
are around 10ms~" and the distances involved are of order 1000km . The timescale just
quoted is based on the observed lifetimes of systems, but it is also typical of the time
taken for an air parcel to flow through the system, viz spacescale/velocity

=1000km /10ms™ =10’ s ~ 1day . [Exercise, how close is one day to 10°s ?]

Weather systems occupy the troposphere which is about 10km deep, so on this argument
we might expect vertical velocities to be typically 10km (IOSS) =10cms™" . It turns out,

for reasons which will be discussed in a later chapter, that large-scale vertical velocities

are about an order of magnitude less than this, i.e. about one km per day or lcms™.

Hence we note that in the x-momentum equation the term 22w cos@ is smaller than

. 107 ms™ _
2Qvsin@ by the ratio w. —s_] ~107 and can be ignored to high accuracy,
v

10ms
allowing us to write the two horizontal components of the momentum equations as
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Where J =2Qsin@ js called the Coriolis parameter. It is twice the vertical component
of the earth’s rate of rotation.

Sometimes it is useful to write this pair of equations as a single equation for the

: . = . . _Ho o
horizontal velocity Vi = (1.v.0) and the horizontal gradient operator [, = . ,5,0 ,
giving
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horizontal + Coriolis = pressure gradient



acceleration Accel force

Dw 107ms™
Dt 10°s
about 8 orders of magnitude less than & . Now in middle latitudes 2€2€0s @ has the same

Turning now to the vertical component we see that =10"ms™, which is

order of magnitude as f ; indeed they are the same at lat 45 where they are closely equal
to 10™s™", so that 2Qu cos @ has magnitude 10~ ms™ . This is 4 orders of magnitude less
than & . Hence if we neglect these two small terms in comparison with & we are left with

_1dp_
p 0z

0=

or

op _
Py P8

Eq0

which we recognise as the hydrostatic equation. Thus in synoptic scale flow, the
atmosphere is in hydrostatic balance to about one part in ten thousand.

Note that we have not said that there are no vertical accelerations, we have said that it is
small. So small in fact that we can calculate the pressure distribution from the density
distribution to high accuracy. If we calculate the fluid motion using a set of equations
which have the vertical momentum equation replaced by Eq 0, then we clearly will not be
able to use that equation to calculate the vertical acceleration. Provided a consistent set of
approximations have been made, it will, however, still be possible to deduce the vertical
acceleration indirectly.

Horizontal forces and acceleration

We look now in more detail at the way the forces combine to produce the acceleration.
Then we shall contemplate the consequences of the scales of motion for the sizes of these
forces, leading us to deduce an approximate relationship between the wind and the
pressure distribution.

Our starting point is the equation of horizontal motion from the previous chapter. We
recast this slightly by transferring the Coriolis term to the right hand side of the equation,
leaving just the relative acceleration on the left hand side. If we now regard the terms on



the right as forces which produce this relative acceleration this Coriolis term is now
thought of as a force. This change of description is analogous to the way we talk
sometimes of a centrifugal force but at other times of a centripetal acceleration, say in
cornering vehicles, according to which point of view is convenient.

Dv, 1
= - DV __D1
D Jjk v, 0 wD

Eq0

horizontal = specific Coriolis + specific pressure
acceleration force gradient force

In the sketch the thick arrow shows the

horizontal wind vector. Using the right

hand corkscrew rule, we see that K v, is K [ v,
directed at right angles to the left of the

wind. Noting that f is positive in the _
northern hemisphere, we see that the "

specific Coriolis force is therefore directed \ Sp. Coriolis force
perpendicular to the wind and to the right — sk Ov,
in the northern hemisphere. As f is of the

opposite sign in the southern hemisphere, the sense of the specific Coriolis force is
directed to the left of the wind in that hemisphere.

The sketch to the right shows the low 1
pressure -—0,p

configuration of the pressure field and the isobars

specific pressure gradient force. This is
directed perpendicular to the isobars and is
directed towards low pressure.
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Putting these forces together (and recalling P ; Hp / isobars
that we are only discussing horizontal
components here) we get the situation Accel
shown to the right. The direction of the

isobars (thin curves) and the direction of

the wind (broad arrow) have been - fk Ov,

High

arbitrarily chosen. The specific Coriolis pressure

force 1s perpendicular to the wind and the
specific pressure gradient force is perpendicular to the isobars. The nett resultant of these
two forces produces the acceleration, shown in the sketch as the open arrow.
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