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Section 2 Vertical Distributions 
 

Variation of pressure with height 
 
To a good approximation the atmosphere is in hydrostatic equilibrium i.e. the vertical 
accelerations are very small compared with the acceleration due to gravity. This 
allows us to relate the change in pressure with height to the local temperature as 
follows. 
 
Consider a column of atmosphere as in figure extending upwards from a horizontal 
area A. 
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Let the pressure at height z  be p  and that at height zz δ+  be pp δ+ .  Consider the 
elemental slab of atmosphere between these two heights.  This is being pulled 
downwards by a gravitational force which has magnitude (mass) x g .  Where g  is 
the gravitational acceleration.  Now mass=vol x density = ρδ .. zA  so the downward 
force is gzA ... ρδ .  This is balanced by the pressure forces.  The bottom of the slab is 
subjected an upward force (pressure x area) of Ap.  exerted by the fluid below, while 

the top of the slab is subjected to a downward force of ( ) App .δ+  exerted by the fluid 
above.  Thus the nett upward force due to these pressures is Ap.δ− . Equating the nett 
upward pressure force to the downward gravitational force and cancelling the area 
gives zgp δρδ −= .  On taking limits we obtain the hydrostatic equation:- 
 

g
dz

dp ρ−=  

Eq 1 

 
Sometimes you may see the left hand side of this equation written as a partial rather 
than total derivative, as a reminder that pressure varies in the horizontal as well as the 
vertical. Indeed this will be necessary later in this course. 
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A consequence of hydrostatic balance is that the pressure force at any height is the 
integrated weight of the atmosphere above that height. 
 
On substituting for ρ  from the gas law (Error! Reference source not found.) we 
obtain after some simple manipulation:- 
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Integrating from height 1z  where the pressure is 1p  to 2z  where it is 2p  gives 
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where 
g

RT
H = .  

 
In general H  is a function of height, because T  is.  H  is called the pressure scale 
height.  In the case of an isothermal atmosphere, in which T  and hence H  is constant 
with respect to height, and assuming for now that g does not vary with height over the 
ranges we are interested in, it is seen that the pressure decreases exponentially with 
height, falling by a factor of e as height increases by H .  For a median temperature of 
250K, H  is 7.32 km.  In such an atmosphere the pressure falls by a factor of 10 as 
height increases by 16.8km.  By the gas law, density is proportional to pressure in an 
isothermal atmosphere, so it too varies exponentially.  
 
The atmosphere is not isothermal, so the variation of pressure with height is not quite 
so simple, but the temperature varies by only a few tens of percent from the average, 
so the pressure still falls approximately exponentially with height, as does the density. 
As a fairly good rule of thumb the pressure fall by a factor of 10 for each 16 km of 
height increase. This means that 90% of the atmospheric mass lies below 16km, 99% 
below 32km and so on. 
 
In these equations consistent units must be used. The S.I. unit for pressure is the 
Pascal (denoted Pa) which is 1 Nm-2. Meteorologists have traditionally used the bar or 
more usually the millibar (mbar) defined as 1mbar=100Pa=1hPa. There is a trend to 
quoting pressures in hPa in meteorological literature.  
 
At mean sea level the pressure is typically 1000 hPa. It may vary between about 940 
and 1040 hPa. 
 

Importance of compressibility 
 
In the previous lecture we saw that in certain parts of the atmosphere the temperature 
decreased with height.  In some fluids with which we are familiar that would be a 
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strange state of affairs.  In water for instance it is easy to get warm water to lie over 
cold, but not the other way round, as may be readily tested while in the bath.  The 
reason is that for an incompressible fluid like water, density depends only on 
temperature, warm water being less dense.  Thus warm water is buoyant with respect 
to cold water and will tend to accelerate up through it.  For a compressible fluid (i.e. a 
gas), in contrast, the relationship between density and temperature depends on the 
pressure as well, and this means that air parcels moving in the vertical will change 
their density because of pressure changes.  We explore these matters in this chapter.  
We shall begin with some thermodynamic considerations, because it makes a 
difference whether heat is supplied to the air parcels or not.  
 

Adiabatic Changes 
 
Any process in which no external energy is transferred to the air parcel is said to be 
adiabatic while one in which external energy is supplied is said to be diabatic. In the 
atmosphere heat can be transferred into an air parcel by radiative process and by 
conduction. However radiation typically produces temperature changes of about 1.5oC 
per day.  Many temperature changes occur much faster than that, so that to a good first 
approximation the radiative effects can be neglected for these.  Likewise molecular 
conduction is negligible except very near to the surface (i.e.  within a millimetre or 
so). Consequently a whole range of processes in the atmosphere are effectively 
adiabatic.  
 
Most textbooks on thermodynamics demonstrate that entropy, S , can be written 
 

( ) CTpCS p += −κln  

 
where C  is a constant and pCR /≡κ . Now RCC vp += , so ( ) γγκ /1−= where γ  

is the ratio vp CC / . For diatomic gases γ =1.4, giving κ =2/7. 

 
Since the entropy of an air parcel S  is constant as that particle undergoes an adiabatic 
change, so is κ−Tp . It is usual to write this constant value in the form κθ −

0p , where 

0p  is a reference pressure always taken to be 1000hPa.  Thus 
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θ  is called the potential temperature. It can be thought of as the temperature an air 
parcel would attain if it were brought to a pressure of 1000 hPa adiabatically.  For any 
pair of temperature and pressure values there is a corresponding value of potential 
temperature. During adiabatic motion the pressure and temperature of an air parcel 
change in such a way as to conserve potential temperature.  
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It will be useful later to note that for two air samples with the same pressure, their 
temperatures will be proportional to their potential temperatures, and their densities 
will be inversely proportional to their potential temperatures.  
 

Static stability 
 
We are now in a position to consider the criterion for static stability in an 
compressible fluid like air.  In this section we confine our attention to processes in 
which water vapour does not condense out into water drops. Consider the atmospheres 
shown in Figure 1 
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Figure 1: Unstable, neutral and stable atmospheres 

Concentrate first on the left-hand distribution and imagine some process which can 
take an air parcel from A and raise it to some other height, shown as A' in the figure, 
with its pressure always adjusting to be the same as that of the surroundings.  (This 
kind of lifting might be produced by the air having to climb a mountain for instance, 
or it might be produced by the mechanical stirring processes produced by the general 
turbulence in the boundary layer near the surface (i.e.  in the lowest few hundred 
meters).  When the particle arrives at A' it will have the same value of � as it did at A.  
However the surroundings have a potential temperature as shown at B and this is 
lower than the value at A'. The parcel is thus less dense than its new surroundings and 
will be subject to a buoyancy force which will make it accelerate upwards. Thus once 
the particle begins to rise it continues to do so with increasing speed. 
 
If a similar lifting process is brought about in the middle distribution, when the parcel 
which starts at A reaches A', it has exactly the same potential temperature as its new 
surroundings and hence has the same density as them.  Consequently it has a no 
tendency to accelerate or decelerate.  
 
In the right-hand case, when the parcel arrives at A', it is surrounded by air indicated 
by B in the figure, and this is potentially warmer. Thus the parcel is more dense than 
its new surroundings and the buoyancy forces will be directed downwards and the 
parcel will be accelerated back towards where it came from.  
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The left-hand distribution (potential temperature decreases with height) is statically 
unstable in that any vertical displacement of lumps of air are augmented and 
magnified by the buoyancy forces.  The right-hand distribution (potential temperature 
increases with height) is statically stable, because any vertical displacement is 
opposed and damped out by the buoyancy forces, while the middle case (potential 
temperature constant with height) is said to be neutrally statically stable.  
 

Corresponding Conditions on Temperature 
 
We do not measure potential temperature directly, so it is useful to write the above 
criteria in terms of temperature. We only need to consider the neutral case as this is 
the boundary of the other cases. 
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where we have used in the appropriate places:- (1) the fact that 0=
dz

dθ
for this case 

and (2) the hydrostatic equation.  If we use the gas law and the definition of θ  we 
obtain for this neutral case:- 
 

dT
dz

g
Cp

= −  

 
Thus in the neutral case the temperature increases with height at a rate -g/Cp, i.e. 
temperature decreases with height at a rate +g/Cp. This is closely equal to 10K/km. If 
the temperature falls with height at a greater rate than this, we have the unstable case, 
while if it falls with height more slowly than g/Cp,, we have the stable case. The 
situation is sketched in the Figure 2.  
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Figure 2 :Stable and unstable atmospheres 

 
In the troposphere the temperature usually decreases with height but less strongly than 
10K/km, so that it is usually stable.  
 
Occasionally limited height ranges can be found in the troposphere where the 
temperature increases with height.  Such a region is called an inversion because the 
temperature gradient is ``inverted'' from the usual situation. Inversions are regions of 
high static stability. 
 

Buoyancy Frequency 
 
We have seen that in stable stratifications a raised parcel of air will accelerate 
downwards, and a depressed parcel of air will accelerate upwards. We can easily get 
an estimate of how large the accelerations are and hence how rapidly the status quo 
will be restored. Consider again Figure 1. Suppose A is at height 0z  and B (and A’) 

at zz δ+0 . Let us suppose that parcel has a mass m′ , and that its volume when it 

reaches B is V . If its density is ρ′  and the density of the surrounding fluid at B is ρ , 
then Vm ρ′=′ , while the mass of fluid which it has displaced is Vρ . Thus, the nett 

upward force on the parcel = upthrust - gravitational force = ( )gVgmmg ρρ ′−=′− . 
(The upthrust was calculated from Archimedes’ principle). Thus, the upward 
acceleration of the parcel is this nett force divided by the mass, so that  
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Now if the pressure of the parcel is the same as that of its surroundings we shall have 
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the approximation being correct to first order. Now  
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and we have 
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The general form of the solutions to this equation is 
 

( )iNtAz ±= expδ  
 
where A is a constant.  
 
For real N , this is a simple harmonic motion, with angular frequency1 N  and period, 
τ , given by 

N

πτ 2=  

 
N  is called the Brunt-Vaisala2 (angular) frequency after a British and a Swedish 
scientist who independently introduced this analysis. 
 
This confirms our previous qualitative argument that when the potential temperature 
increases with height, air parcels which are somehow given an upward push will 
return to their original position, but it also takes that argument further, suggesting that 
it bobs up and down about its starting position and it indicates how rapidly the 
oscillation takes place. Of course we have drastically simplified what will really 
happen, as we have not taken into account that we have to move the environment 
about to let the chosen air parcel move up and down. This means that the potential 
energy which drives the motion is turned into kinetic energy of the parcel plus 
environment rather than of the parcel alone and the real frequency will be less than the 
Brunt-Vaisala frequency. 

                                                           
1 Note that we have carefully stated angular frequency. Frequency in the more usual sense of number of 
cycles per unit time would be the inverse of the period, namely π2/N .  
2 Each “a” in this name should strictly speaking have an umlaut (two dots) over it. 


