

Satellite

Land Surface Temperatures

Isabel Trigo

Outline

- European Meteorological Satellites
 - Geostationary
 - Polar-Orbiter
- Land Surface Temperature
 - Characteristics
 - Error Sources
 - Validation
- Future Sensors

EUMETSAT Satellites - GEO

Meteosat First Generation

- Geostationary orbit
- CURRENT: Nominal sub-satellite point at 57° E

0° images available since 1982

(CDRs: LST)

3 Channels:

5 km sampling distance at nadir 30 minutes

Channel VIS	$0.45-1.0\;\mu m$
Channel WV	5.7 – 7.1
Channel TIR	~ 11.0 µm

Meteosat-7

EUMETSAT Satellites - LEO

AVHRR

- 1 km at sub-satellite point
- \geq 2 observations / day

Channel 1	$0.58 - 0.68 \ \mu m$
Channel 2	$0.725-1.0\;\mu m$
Channel 3	~ 1.6 (day) / ~3.8 µm (night)
Channel 4	11.3 – 11.3 μm
Channel 5	11.5 – 12.50 μm

IASI ~12 km

http://www.eumetsat.int

EUMETSAT Satellites - GEO

Meteosat Second Generation

- Geostationary orbit
- Nominal sub-satellite point at 0° long

Instruments

Spinning Enhanced Visible and Infrared Imager - SEVIRI

Geostationary Earth Radiation Budget - GERB

- visible-infrared radiometer for Earth radiation budget studies
- 2 broad-band channels (0.32 4 μm and 0.32 30 $\mu m)$
- sub-satellite point at ~45 km; temporal sampling - 15 min

EUMETSAT Satellites - GEO

SEVIRI - Spinning Enhanced Visible and Infrared Imager

11 Channels:	Channel 1 VIS	0.6 µm
3 km sampling distance at sub-	Channel 2 VIS	0.8
satellite point	Channel 3 NIR	1.6
15 minutes	Channel 4 MIR	3.9
	Channel 5 WV	6.2
	Channel 6 WV	7.3
	Channel 7 IR	8.7
	Channel 8 IR/O ₃	9.7
High Resolution VIS channel:	Channel 9 TIR	10.8
1km sampling distance at sub-	Channel 10 TIR	12.0
satellite point	Channel 11 IR/CO ₂	13.4
15 minutes	Channel 12	HRV

SEVIRI/MSG - LST

Generalised Split-Window \rightarrow 10.8µm and 12.0µm (Wan & Dozier, 1996) Trained using CLEAR SKY synthetic SEVIRI/MSG data

$$T_{s} = (A_{1} + A_{2} \frac{1 - \varepsilon}{\varepsilon} + A_{3} \frac{\Delta \varepsilon}{\varepsilon^{2}}) \frac{T_{10.8} + T_{12.0}}{2} + (B_{1} + B_{2} \frac{1 - \varepsilon}{\varepsilon} + B_{3} \frac{\Delta \varepsilon}{\varepsilon^{2}}) \frac{T_{10.8} - T_{12.0}}{2} + C$$

GSW parameters depend on:

- total column water vapour (ECMWF forecasts)
- viewing angle

Channel Emissivity → Fraction Vegetation Cover

Operational LST Product

SEVIRI/MSG - LST

- 🗸 15-min
- ✓ 3 km at sub-satellite point
- ✓ clear sky pixels
- ✓ NRT (EUMETCast)
- ✓ Off-line

Developer: LSA SAF / IPMA Trigo et al. (2008) in *J. Geophys. Res.*, DOI:10.1029/2008JD010035 Freitas et al. (2010) in *IEEE Trans Geosc Remote Sens*, DOI: 10.1109/TGRS.2009.2027697.

SEVIRI/MSG - LST

1

- Temporal sampling: 15 min; poorer under the ITCZ
- Spatial resolution over Africa: 3km up to ~5km
- LST uncertainty highly influenced by emissivity over (semi-)arid regions

Emissivty

Under Testing: Kalman Filter approach to exploit the high temporal sampling Channels 8.7, 10.8 and 12.0µm \Rightarrow Emissivity & LST

Marsiello et al. (2013) in Atmos. Meas. Tech, DOI: 10.5194/amt-6-3613-2013

LSA SAF – Product Validation

LST

- Intercomparison of satellite derived similar products (MODIS, AATSR, VIIRS, ...)
 - Consistency Analysis
- Validation against ground observations Portugal (Évora), Namibia (Gobabeb, Kalahari), Senegal (Dahra)
 - As an Indenpendent Reference

Land Surface Temperature – Validation

Land Surface Temperature – Validation

T_{sup} MSG/SEVIRI (Land-SAF) versus in situ T_{sup}

In Situ Observations

LST - Evora

High Variability in Space and Time:

- Impact of view & illumination geometry on retrievals
- Needs to be taken into account when comparing LST products and Ground obs

Directional Effects

Directional Effects on LST

Idealized single tree view at Évora: Nadir & SEVIRI view at different local times in July

Geometric Model – estimate shapes of objects seen by the sensor

Boolean model – derive overlap probabilities and the actual fraction of each end-member

Different Viewing Angles ↓

Different LST

Intercomparison LEO - SEVIRI

LST versus in situ T_{sfc}

(C)

60

50

40

30

20

10

0

-10

-10

0

LST (°C)

Without Geometric Correction

	Day	Night
MODSW (MOD11)	-5.0/3.1	-0.6/1.2
MODTES (MOD21)	-2.5/1.4	
SEVIRI	-1.2/2.2	-0.1/1.2

With Geometric Correction

	Day	Night	
MODSW (MOD11)	-2.7/1.9	-0.7/1.2	(Bias/StDev)
MODTES (MOD21)	-0.8/1.3		
SEVIRI	0.5/1.4	0.1/1.2	

Night

60

Day

50

Ermida et al (2014) in Remote Sens Environ, DOI: 10.1016/j.rse.2014.03.016

Direction effects at Évora

Evolution of SEVIRI

Meteosat Third Generation

Playload will be distributed by 2 satellites

MTG-I (launch foreseen for 2018)

Flexible Combined Imager (FCI)

16 channels (1km / 2 km; high-resolution 0.5 km)

10 min

Lightning Imager (LI)

Lightning detection (total - cloud-cloud & cloud-ground)

MTG-S (launch foreseen for 2020 - TBC)

Infrared Sounder (IRS)

800 channels LWIR+ 920 channels MWIR – full disk; 4 km 60 min

Ultraviolet, Visible and Near-Infrared Sounding (Sentinel-4) UV: 305 – 400 nm; VIS: 400 – 500 nm; NIR: 755 – 775 nm

Europe; 60 min

Summary

- Meteosat Satellites: allow representation of the diurnal LST cycle over Africa
 - 1st generation: 30 min, 5km at nadir; <u>1982 2006</u>
 - MSG: 15 min; 3km at nadri; <u>2004 present</u>
- Sources of LST uncertainty:
 - Atmospheric Correction
 - Algorithm inaccuracies
 - Sensor Noise / calibration
 - Surface Emissivity
 - Cloud Contamination
 - Aerosol (high loads)
- Directional Effects: LST corresponds to the radiometric temperature of the surface within the sensor FOV.
 - Partially explain differences among satellite products
 - Should to be taken into account when validating with ground data
 - Still to be better understood.