

Land Surface Temperature and Emissivity Projects at NASA JPL

Glynn Hulley, Simon Hook, Pierre Guillevic

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

(c) 2014 California Institute of Technology. Government sponsorship acknowledged.

EarthTemp Meeting, Karlsruhe, Germany, 23 – 25 June 2014

Outline

- MOD21 LST&E Product (Collection 6)
- ASTER Global Emissivity Database (GED)
- NASA MEaSUREs LST&E Products

Current MODIS LST&E Products

MODIS LST Products	Product Level	Dimensions	Spatial Resolution	Temporal Resolution	Algorithm	Output Products
MOD11_L2	L2	2030 lines 1354 pixels/line	1km at nadir	Swath 2x daily	Split-Window	- LST
MOD11B1	L3	200 rows 200 columns	~5 km (C4) ~6 km (C5)	Sinusoidal 2x daily	Day/Night	- LST - Emissivity (bands 20-23, 29, 31,32)
MOD11C3	L3	360ºx180º Global	0.05º x 0.05º	Monthly	Day/Night + Split-Window	- LST - Emissivity (bands 20-23, 29, 31-32)
**MOD21_L2	L2	2030 lines 1354 pixels/line	1km at nadir	Swath 2x daily 8-day Monthly	TES (ASTER)	- LST - Emissivity (bands 29, 31, 32)

- MOD21 to be released with MODIS Collection 6 reprocessing Oct/Nov 2014.
- MOD21 C6 regarded as supplemental/experimental but after validation, testing and algorithm updates, MOD21 C6.1 will be primary MODIS LST product or merged with MOD11

Generated using prototype MOD21 algorithm at MODAPS

Generated using prototype MOD21 algorithm at MODAPS

MOD11 (Split-Window) versus MOD21 (TES retrieval)

0

Over Sahara, MOD11 classified as bare and assigned single emissivity but a wide range in emissivity as seen with MOD21 (TES)

Physical-based MOD21 Emissivity used for Land Cover Change Monitoring

- MOD21 band 29 emissivity sensitive to background soil and dry/green vegetation
- NDVI unable to make distinction between background soil and dry vegetation
- MOD21 emissivity able to better capture seasonal trends and interannual trends than NDVI

Hulley, G., S. Veraverbeke, S. Hook, (2014), Thermal-based techniques for land cover change detection using a new dynamic MODIS multispectral emissivity product (MOD21), Rem. Sens. Environ, 140, p755-765

MODIS LST Validation: Great Sands, Colorado

MOD11 LST underestimated due to overestimation of bare surface type emissivity

** Radiance-based LST validation using lab-measured sand samples collected at dune site

ASTER Global Emissivity Database (GED)

Spectral	Spatial	Temporal	Products	Emissivity Accuracy
5 Bands (8-12 μm)	~100 m	Mean (2000-2008)	Emissivity, NDVI, GDEM, Water mask, LST	<1%

ASTER-GED band 12 emissivity (9.1 µm)

https://lpdaac.usgs.gov/products/community_products_table

NASA MEaSUREs LST&E

- GOAL: "Develop long-term, consistent, and calibrated Earth System Data Records (ESDR's) valid across multiple missions and satellite sensors"
- NASA JPL will develop 3 LST&E ESDR's
 - Unified MODIS LST&E Product
 - Merging MOD11 and MOD21 using uncertainty analysis
 - Consistent GOES LST Product
 - Single channel inversion using unified MODIS emissivity
 - Unified Emissivity Product
 - Merging MODIS Baseline Fit database and ASTER GED

Unified MODIS LST ESDR Example: Kelso Dunes

Unified MODIS LST ESDR has higher accuracy

Unified Emissivity Example: Namib Dunes, Namibia

