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Provision of uncertainty estimates in the retrieval of geophysical parameters from satellite data is fundamental to ensuring the correct usage of the data.
Often uncertainties in remote sensing datasets are expressed in relation to in-situ observations; for example the GHRSST requirements for sea surface
temperature data are to provide single sensor error statistic bias and standard deviations (GHRSST Science Team, 2010). Uncertainty is inherent in the

retrieval process and can be calculated independently of in-situ observations, enabling it to be validated in its own right. Several different sources of
uncertainty in the retrieval process will contribute to the total uncertainty budget. In general terms the following sources of uncertainty can be
identified which are likely to be common to most geophysical retrievals. For all satellite observations there will be some degree of noise in the
observation that needs to be propagated into the geophysical parameter retrieval (uncorrelated or random effects). Some uncertainty will be inherent in
the retrieval process itself and this will be correlated on synoptic scales as Earth surface properties are retrieved through the atmosphere (locally
systematic effects). Uncertainty can also be correlated over larger scales as the result of residual biases, which may arise from calibration processes or
brightness temperature harmonisation across different sensors (large scale effects). Finally, where data are provided as averaged products at a reduced
spatial resolution this can introduce sampling uncertainty if data points are missing due to bad data, or often in the case of visible and infrared data due
to cloud cover. Here we demonstrate how to estimate these individual uncertainty components and construct an uncertainty budget with reference to
sea surface temperature (SST).
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Figure 4: Sampling uncertainty modeled as a function of is more important
SST variability.
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