

Institute of Meteorology and Climate Research Meteorological Satellite Analysis (MSA) Group http://www.imk-asf.kit.edu/MSA.php

# Land Surface Temperature Comparison methods and regional validation initiative

Folke Olesen, Frank Göttsche



## Overview

Land surface temperature (LST) is one of the key quantities in the EarthTemp Network. Its accurate determination from satellite data (S-LST) is a central task in the network. S-LST is retrieved from top of atmosphere (TOA) brightness temperatures and needs validation as well as comparisons among different S-LST products.

Real validation in a strict sense requires ground based measurements of LST that are completely independent from the data used in the S-LST retrieval algorithms.

Cross comparisons of S-LST from different instruments and/or algorithms support the investigation of its guality. In S-LST the so-called 'radiance-based validation', is compared with NWP LST data that fit the satellite TOA-BT.

In order to investigate the strengths and weaknesses of the validation and comparison approaches, a strategy for a regional validation initiative has been developed.

Comparisons and validations are carried out in selected. representative and well characterized regions with an in-situ ground based station as core element - see figure on the left.

The regions were selected according to the following criteria:

- Homogeneous on various scales over at least 100 km<sup>2</sup>
- Limited number of well defined end members, e.g. tree & grass
- · Surface cover variation only due to seasons
- Relevant surface and climate within FOV of METEOSAT
- Stable political situation and reasonably safe access



Measured cloud cover at validation stations

Cloud masks (CM) for intercomparisons

- 1. CM from S-LST dataset  $\rightarrow$  high dependency on CM
- Extended around cloud borders
- 3. Improved CM (temp. & spatial analysis)  $\rightarrow$  low dependency on CM

#### Input Data et in GeoTiff. lat/lon) (underlined quantities should I Slow variation Static TOA temperature Elevation Emissivity Surface cover Geology

Atmospheric profiles Cloud mask Anisotropy Satellite calibration View angle Time of observation

### Validation

Current data

- Validation of S-LST against in-situ LST at four KIT stations
- SAT-CM, improved CM and measured clouds: Error from CM
- · Sat-emissivity and measured emissivity: Error from emissivity
- Anisotropy investigation including station LST and in-situ data

## **Regional inter-comparison**

Homogeneous region ~ 100 km x 100 km around validation sites Data with improved CM

- S-LST differences (reference SEVIRI, no timing problems) Emissivity differences
- · Anisotropy study over the region



Gobabeb, Namibia: gravel desert, 500 m asl 23 South

Evora, Portugal: oak trees and grass, 200 m asl,

Dahra, Senegal: "Bush", 40 m asl, 15 North

Ideas for additional investigations at the validation sites or in the inter-comparison regions are welcome. The sites are regularly visited, have solar power supply and daily data transfer to KIT.

rank.goettsche@kit.edu

EarthTemp Network Meeting, 12-14 June 2013, Copenhagen, DK



