

SST changes in the Arctic (5 years of METOP-A/AVHRR results)

Pierre Le Borgne, Anne Marsouin, Sonia Péré, Hervé Roquet Centre de Météorologie Spatiale, Météo-France, Lannion, France

Introduction

Mean METOP-A/AVHRR derived daytime SST in September 2012

METOP-A/AVHRR: 1km resolution SST Global coverage Processed by OSI-SAF At CMS since 2007

SST from IR data? -Ice -Cloud -Dry & cold atmospheres -Illumination conditions

Introduction

1) How reliable are satellite borne IR radiometer derived SSTs?

- Understanding errors through the METOP-A/AVHRR (daytime) example
- Solutions?

Previous works:

- Poulter & Eastwood, 2008 http://www.osi-saf.org
- Hoyer et al , 2012, RSE 0.8 0.7 Hoyer et al , 2012, RSE 0.6 O 0.5 Deg 0.4 0.3 0.2 0.1 2)What can we observe with such data 0 NAVO G AATSR METOP A MODIS MODIST AMSRE in the Arctic?? 0.2 -Diurnal warming? 0.1 -Year to year variability? Deg C

-0.2

-0.3

Earthtemp workshop 12-14 June, Cop

Fig. 4. Error statistics (satellite-in situ) for waters colder (solid) and warmer (dashed) than 5 °C. Upper figure shows standard deviation and lower figure shows bias.

METOP A MODIS

MODIST

AMSRE

Results in 2010

NAVO_G AATSR

Data : METOP SST processing overview

- METOP SST (see http://www.osi-saf.org)
 - Cloud mask (Maia, L. Lavanant, MF/CMS)
 - Ice mask (Ice probability, S. Eastwood, met.no)
 - Cloud/ice control
 - Daytime algorithm

SST = $a T_{11} + (b T_{CLI} + c S_{\theta}) (T_{11} - T_{12}) + d S_{\theta} + e$

– Nighttime algorithm

SST = $(a + b S_{\theta}) T_{37} + (c + d S_{\theta}) (T_{11} - T_{12}) + e S_{\theta} + f$

Data : METOP SST

DATA: buoy measurements

- October 2007 till September 2012 (inclusive)
- North of 60N
- Matchups at full resolution; buoy location in central pixel within 3 hrs
- Few data but in « European Arctic »

Daytime July

Nighttime January

DATA: ECMWF output derived BT simulations

- ECMWF operational forecasts
- RTTOV version 10.2 applied onto each profiles
- BTs at 3.7, 10.8 and 12 μm

Earthtemp work

Daytime validation results

1 (

0.8

0.6

0.4

0.2

0.0

-0.2

-0

-0.5

0.0

0.5

1.0

Error vs T11-T12

1.5 t11-t12 2.0

2.5

3.0

err

mean

nbcas

std

algo :day 5 years error vs t11-t12

nbcases:17339 bias : 0.04 std : 0.65

2000

1500

1000

500

38

Error vs clear sky coverage: Clouds induce negative errors (no evidence of ice related errors)

Earthtemp workshop 12-14 June, Copenhagen

Simulated Error vs T11-T12

Regional distribution (July)

Mean daytime

Earth

Summertime error origin

Validation conclusions

- Significant influence of cloud contamination
 - Improved cloud/ice detection effort: met.no
- Errors determined by the shape of atmospheric profiles:
- (ex: summer temperature inversion cases lead to large positive errors)
- Errors well reproduced by simulations

Solutions

1) Multisensor Bias corrections (Hoyer et al, 2013, RSE, in press)

AATSR and NAVOCEANO GAC data as reference

Metop-Day

2) Regional algorithms

SST = (a + b S_{θ}) T_{11} + (c + d T_{CLI} + e S_{θ}) $(T_{11} - T_{12})$ + f +g S_{θ}

See Hoyer 2012 CCI report

B) <u>NWP derived correction methods</u>

NWP derived methods

- Accounting for actual atmospheric absorption?
- 2 main (BT simulation based) approaches:
 - OE (Merchant et al 2008,2009,2013)
 - Bias correction (LeBorgne et al, 2011, Petrenko et al, 2011)
- SST= guess + \sum_{i} ai (obsBT_i-simBT_i)
- Simulations must be « exact »: they should produce the same BTs as would be observed, given a surface temperature and atmospheric profiles:

A BT simulation adjustment step is necessary

Ear

Toujours un temps d'avance

Toujours un temps d'avance

NWP derived methods in Arctic

- Simulations are reliable and OE or bias correction methods are promising
- Main issue: adjusting BTs ?
- OSTIA (foundation SST) based simulations are underestimated in case of DW
- Simulation adjustment must be revised in permanent daytime conditions! (ongoing)

DW in the Arctic?

Diurnal warming from buoys measurements

Buoy derived DW (daily max >0.5)

Same method as that used for SEVIRI (*Le Borgne et al, RSE, 2011*)

Latitudes > 60N, summer 2012

« Foundation » SST: mean SST for LST < 10 Or LST> 20

DW=SST-Found. if wind below 8ms-1 Data from the CMS DW dedicated MDB

METOP/AVHRR vs buoy DW cycle (max >0.5)

Arctic DW summary

- Frequent polar orbiter swaths at same location allow evaluation of DW in the Arctic
- Drifting buoy and METOP/AVHRR derived DW estimates shows a reasonable agreement

Earthte June 2012 lat >60N: daytime OSTIA-buoy differences

Variability and anomalies

METHOD:

 Determination of monthly means (OSI-SAF ice concentration and SST for Ice concentration < 50%)

- Determination of a mean over 5 years
- Anomaly= monthly mean mean over 5 years
- Comparison with ARC Arctic anomalies (Llewellyn-Jones et al, 2011, GHRSST XIII)
- Ice and SST anomalies??

Ear

Toujours un temps d'avance

ARC vs METOP-A SST anomalies 2007 2009 ARC - SST Anomalies for July

Ice concentration in September 2007

Ear

Ice concentration anomaly in September 2007

SST anomaly in September 2007

Ice concentration in September 2012

Ice concentration anomaly in September 2012

SST anomaly in September 2012

Conclusions (1)

- METOP-A provided More than 5 years of (stable) full resolution SST data over the Arctic
- Validation results showed:
 - Cloud(ice) contamination issues
 - Algorithmic issues related to anomalous atmospheric profiles
- Simulations are reliable (improvements will come from OE or bias correction)
- BT adjustment problematic

Conclusions (2)

- DW can be monitored by METOP (comparable to buoy estimates)
- METOP-A SST anomalies consistent with ARC
- Large year-to-year SST variability
- Ice extension anomalies correlated with SST anomalies
- Record Year 2007 quite distinct from Record year 2012

Discussion?

- Improving IR derived SST in the Arctic
 - Better use of simulations
 - BT corrections in permanent daytime conditions?
- DW in Arctic? What is foundation SST in Arctic summer?
- More numerous buoy measurements are requested (particulary off America and Siberia)
- Correlation between Ice extension and SST anomalies ?
- Origin of SST anomalies? (more clear sky days?

FERRET Ver. 8.71

ivance

SST anomaly in September 2012

Nb clear sky cases in September 2012 compared to mean September

NCE Ivance

Arctic DW summary

- Frequent polar orbiter swaths at same location allow evaluation of DW in the Arctic
- Drifting buoy and METOP/AVHRR derived DW estimates shows a reasonable agreement
- OSTIA buoy down to below –0.5K in case of low wind

Earthte June 2012 lat >60N: daytime OSTIA-buoy differences

Nb clear sky cases in September 2012 compared to mean September

NCE